
A New Algorithm for Computing Certified Numerical
Approximations of the Roots of a Zero-dimensional System

Stef Graillat
UPMC/CNRS LIP6, PEQUAN team
104 avenue du Président Kennedy

75016 Paris (France)
Stef.Graillat@lip6.fr

Philippe Trébuchet
UPMC/CNRS LIP6, APR team

104 avenue du Président Kennedy
75016 Paris (France)

Philippe.Trebuchet@lip6.fr

ABSTRACT
This paper provides a new method for computing numerical
approximations of the roots of a zero-dimensional system.
It works on general systems, even those with multiple roots,
and avoids any arbitrary choice of linear combination of the
multiplication operators. It works by computing eigenvec-
tors (or a basis of the full invariant subspaces). The sparsi-
ty/structure of the multiplication operators by one variable
can also be taken into account.

Categories and Subject Descriptors
G.0 [Mathematics of Computing]: General; G.1 [Numerical
Analysis]: General—Numerical algorithms, Interval arith-
metic, Multiple precision arithmetic; G.1.5 [Numerical Anal-
ysis]: Roots of Nonlinear Equations—Systems of equations,
Error analysis

General Terms
Algorithms

Keywords
Multivariate polynomial, normal form, quotient algebra, root-
finding, symbolic-numeric computation

1. INTRODUCTION
Let K a field (generally K = R or C) and f1, . . . , fs ∈

K[x] be multivariate polynomials whose common zero set is
composed of finitely many points. The algebraic polynomial
system solving process mainly relies on two time-consuming
steps :

• The first one is to compute a representation of the
quotient algebra A = K[x]/(f1, . . . , fs).

• The second one is to derive some information about
the roots from the previous representation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’09, July 28–31, 2009, Seoul, Republic of Korea.
Copyright 2009 ACM 978-1-60558-609-0/09/07 ...$5.00.

The paper will only focus on the second step. More pre-
cisely, the purpose of this paper is to compute a certified
numerical approximation of the solutions. To obtain this in-
formation from the representation of A, only four strategies
are currently available :

• Following [14], one can compute a Rational Univari-
ate Representation (RUR), which is a symbolic repre-
sentation of the roots. As a symbolic representation,
its computation involves computations with big coef-
ficients, and furthermore, it involves the computation
of the full multiplication table in the quotient algebra,
which is costly. Afterwards it remains to compute ef-
fectively the required numerical approximation, which
is done, for instance, via the application of Uspensky’s
algorithm.

• An algorithm based on homotopic continuation method
(see [19]) can be very efficient.The problem is that
there is no certification even for the number of roots.

• Following [5], one can compute a basis which makes
simultaneously triangular all the multiplication opera-
tors by one variable in A. Modulo a heuristic of clus-
tering, it only remains to read off the diagonals the
coordinates of the roots. For computing the basis, one
can use a generic linear combination of the multiplica-
tion operators by one variables. Unfortunately there
is no way to check that a given linear form is generic
or not. Moreover, there is no way to check that the
clustering heuristic performed well or not. Finally no
concern is given in this paper [5] for certifying the pre-
cision eventually obtained. Another drawback of this
method is that the linear combination of the multipli-
cation operators produces in general a dense matrix,
even though the multiplication operators by one vari-
able are sparse separately.

• Using the eigenvalues/eigenvectors of the multiplica-
tion operators separately to recover the information
about the roots. In [11] two algorithms are suggested,
either computing the eigenvalues of Mxi+1 (the matrix
multiplication by xi+1) restricted to the eigenspaces of
Mxi , or using the property that the common eigenvec-
tors to all the multiplication operators are the evalua-
tion operators at the roots.

To sum up, the first method transforms the problem of
solving a polynomial system into the problem of accurately
computing the roots of an univariate polynomials [14]. The

167

third and fourth methods transforms the problem of solving
a polynomial system into the pure linear algebra problem of
finding eigenvalues and eigenvectors [5, 6, 9, 10, 11].

In this paper we provide an acceleration of the fourth
method and extend it to get a numerical approximation of
the roots from the multiplication operators. Our routine
performs without any generic choice and more importantly
gives a certified result.

2. PRELIMINARIES
Given B be a set of vectors, we will hereafter denote by

〈B〉 the vector space spanned by the vectors of B.
In the rest of the paper we will assume as given :

• a field K (K = R or C),

• a list f1, . . . , fs of multivariate polynomials of K[x]
generating a zero-dimensional ideal (with x = x1, . . . , xn),

• a monomial basis B of A = K[x]/(f1, . . . , fs),

• a function that allows us to compute the multiplication
operator Mi : 〈B〉 → 〈B〉

p → xip.

As the whole paper is devoted to the study of the quotient
algebra A = K[x]/(f1, . . . , fs), and for convenience, we will
identify a vector of 〈B〉 with a polynomial of A.

The operators we will be dealing with are operators that

belong to the dual space ˆ〈B〉. Let m be a monomial of the
monomial basis of B, and let v be a vector of the vector
space spanned by B, i.e. 〈B〉, we will call the coordinate
of m in v, the component vi of v such that v − vim is a
polynomial whose support does not contain the monomial
m.

First of all let us recall a well known result proved in [11]
and that can be found in [7, Thm 4.23,p.87].

Theorem 2.1. The common eigenvectors to all the trans-
posed multiplication operators are the evaluation at the roots.

From this one easily derive the following result.

Theorem 2.2. The common eigenvectors to all the trans-
posed multiplication operators by one variable, i.e. xi, are
the evaluation at the roots.

3. A FIRST ALGORITHM IN THE EXACT
CASE

Most of the material presented in this section was already
presented in [11], but for the sake of completeness we recall
the main points.

Hereafter, we will be concerned with the dual operators of
the operators from A to A (recall that A = K[x]/(f1, . . . , fs))
that are associated with the multiplication by one variable.
There are n such dual operators.

Let us now state the algorithm, where it is assumed that
there is no numerical error done and where we assume that
we are always able to decide whether or not a certain vector
is an eigenvector.

Algorithm 1 (Undernum).

Input : lm = (M1, . . . , Mn) the dual multiplication operators
i an integer index
lv a list a vectors expressed on the canonical basis

Output : A numerical approximation of a common eigen-
vector to all the Mi.

• Sol = []

• Compute M , the matrix of the restriction of Mi on the
vector space spanned by the vectors of lv.

• For each eigenvalue v of M do

– if the eigenspace associated to v has dimension 1
then

∗ Let e be the eigenvector of the eigenspace.

∗ Let Mlv be the matrix whose columns are the
vectors of lv.

∗ e′ = Mlve

∗ Sol = Sol ∪ [e′]

– else

∗ Let le denote the list of eigenvectors associ-
ated to v.

∗ Sol = Sol ∪ Undernum(lm, i + 1, le)

• Return Sol

Given Algorithm Undernum, we can now present Algorithm
Symbonum which computes the roots of a polynomial system
thanks to the eigenvalues computed by Undernum.

Algorithm 2 (Symbonum).

Input : M1, . . . , Mn the n transposed multiplication operators
Output : A numerical approximation of the roots of the
system f1, . . . , fs.

• Res = []

• Let C be the list of the vectors of the canonical basis.

• Tmp sol = Undernum([M1, . . . , Mn], i, C)

• For each v in Tmp sol do

– tmpres=[]

– for i from 1 to n do

∗ tmpres = tmpres ∪
DotProd(Row(1, Mi), v/v[1])

– Res = Res ∪ tmpres

• return Res

In the previous algorithm, DotProd computes the dot
product of two vectors. The function Column(i, M) returns
the i-th column of the matrix M .

Theorem 3.1. During all the calls to Undernum the trans-
posed multiplication operator Mi leaves the space spanned by
lv globally invariant.

168

Proof. The first time Undernum is called, the space spanned
by the vectors of lv is the whole space so M1 leaves it globally
invariant. During the first level of recursion call to Undernum

the vectors of lv denote a basis of an eigenspace of M1, so
as M1 and M2 commute, M2 leaves these spaces globally
invariant.

For treating the second level of recursion, let E2 be the
vector space spanned by the vectors of lv at this level, and
E1 the vector space on which the restriction of M2 has been
computed at the first level of recursion. E1 is left globally
invariant by M3 and as M3 and M2 commute, this eigenspace
of the restriction of M2 on E1 is left globally invariant by
M3. Hence the matrix of the restriction of M3 to E2 can be
computed.

The same argument applies for treating the higher level
of recursion. �

Theorem 3.2. The algorithm Undernum stops after a fi-
nite number of operations and produces a numerical approx-
imation of the common eigenvectors to all the multiplication
operators by one variable.

Proof. Let us consider here the space E spanned by the
vectors of the list lv for a certain recursive call. From the
previous theorem, E is left globally invariant by all the Mi.
Hence it is meaningful to compute the matrix of the restric-
tion of these operators on E.

Remark now that the eigenvectors found after n levels of
recursion are necessarily common to all the multiplication
operators by one variable. Remark also that an eigenvector
v whose associated eigenvalue is of geometric multiplicity
one, i.e. an eigenvector that is stored in our Sol variable,
is a common eigenvector to all the multiplication operators
by one variable : if the associated eigenvalue has geometric
multiplicity one, then the eigenspace is of dimension one.
However this space is left globally invariant by the other
multiplication operators, that is to say v is also an eigenvec-
tor to the other multiplication operators. In other words, v
is a common eigenvector to all the multiplication operators.

Hence, after at most n recursion calls, all the common
eigenvectors to all the multiplication operators will be found.
In other words after at most n recursions, we have computed
the solutions of the system f1, . . . , fs. �

First of all remark that in many applications the first vari-
able is a separating element (the first coordinate of all the
distinct roots are different), hence in the previous algorithm
only one computation of eigenvectors is undertaken which is
very efficient. Though this latter remark reveals one reason
to consider this algorithm, this method has several draw-
backs :

• there is no certification of what is computed,

• numerically speaking the eigenvectors are not well de-
fined,

• the algorithm requires the computation of all the mul-
tiplication operators by all the variables.

4. NUMERICAL METHODS
In this section, we present an optimization of the algo-

rithm presented in the previous section.

4.1 Numerical observations
Recently, certified algorithms [13, 15] have been designed

for computing eigenvalues. Precisely, these methods perform
using controlled arithmetic and compute an inclusion box of
the eigenvalues/eigenvector. However, in case of eigenvalues
of geometric multiplicity greater than one, it is impossible
to get bounds on the computed eigenvectors. The following
theorem from [16, Lemma 2.1], essentially states this.

Theorem 4.1. For A ∈ Mn(K), let an eigenvalue λ ∈
Spec(A) (Spec denotes the spectrum) be given with algebraic
multiplicity m and let y �= 0, be a vector of K

n such that
Ay = λy, i.e. y is an eigenvector associated to λ. Then for
all ε > 0 there exists Ã such that ||A − Ã||∞ ≤ ε and the
following properties hold :

• λ ∈ Spec(Ã).

• λ is of algebraic multiplicity m.

• λ is of geometric multiplicity one.

• Ãy = λy.

This theorem essentially states that a floating point com-
putation of the eigenvectors of a matrix, essentially com-
putes bases of its full-invariant subspaces, and not only of
its eigenspace. It also states that using floating point oper-
ations, one cannot recover the common eigenvectors to all
the multiplication operators.

Fortunately, the full invariant subspaces of one multipli-
cation operator are stable by the other ones and contains,
of course, the eigenvectors we are looking for. Furthermore,
one could also notice that they also provide informations
about the algebraic multiplicity about the roots, even when
the considered eigenvalue is defective. Dealing with defective
eigenvalues and still recovering the algebraic multiplicity is
the subject of a further work.

4.2 Clusterization
In what follows, we will be faced with the problem of

grouping together eigenvalues and vectors associated to these
eigenvalues. From the numerical point of view, only non
defective eigenvalues exist, rounding errors make defective
eigenvalues appear as non defective but with associated eigen-
vectors that are quite close. Hence in what follows we will
denote by eigenvectors the vectors provided by the QR-
multishift routine.

Numerical roundoff errors also make eigenvalues of alge-
braic multiplicity greater than one appear as many close
eigenvalues.

What we want to do is grouping together these eigenval-
ues that are quite close and their associated eigenvectors.
Moreover in the case of defective eigenvalues, clusterizing
also means extracting a numerical basis of such a group of
vectors. The danger if this latter operation is not performed
is to loose all the meaningful information in the remaining
operations.

For performing the grouping operations we use a well
known clustering technique based on LAPACK error esti-
mators and which can also be found in [5].

Consider an eigenvalue α, and v and u be its associated left
eigenvector and right eigenvector : Au = αu and vtA = αv.
The reciprocal condition number of α is the quantity

rcondα =
|v.u|

‖v‖ · ‖u‖ ,

169

where u.v denotes the dot product of the vector u and v and
‖ · ‖ represents the Euclidean norm of the vectors.

The reciprocal condition number measures the sensitiv-
ity of the computed eigenvalue toward small perturbations
of the input matrix; it may be seen as some sort of first
derivative of the function that takes a matrix and returns
its eigenvalues.

We consider that two eigenvalues αi, αj are the same if
and only if their difference is smaller than the quantity

max(
prec × ‖Vαi‖

rcondαi

,
prec × ‖Vαj ‖

rcondαj

).

Using the informal characterization of the upper para-
graph, one can easily see that this formula for error estimate
is just the precision to which the matrix is known times the
norm of the matrix (i.e. the precision to which the coeffi-
cients are known inside the computation times the sensitivity
of the computation with respect to perturbations).

What we must say here is that these estimators are only
estimators and can be arbitrarily wrong. We must also men-
tion that this wrong behavior hardly ever happen in practice.

From what precedes one can see that the method for mak-
ing clusters is only a heuristic and that there is nothing cer-
tified at that point!

We can also notice that contrary to the usual exposition,
we did not here used ε, the machine precision, but prec
which is the precision to which the matrix is known. Indeed
consider what happens during one of the recursive call to
Undernum : we express a small matrix based on approximate
vectors, hence the exact eigenvalues of the approximate ma-
trix could be known to be separated while they should be
the same if the initial vector would have been known exactly.

4.3 Modified Algorithm
In the following proposition we say that a common eigen-

vector v to all the multiplication operators by one variable
is normalized if its first coordinate v is 1.

Proposition 4.2. Suppose that x1 ∈ B, and let e be an
eigenvalue of M t

x1 of algebraic multiplicity k, then the nor-
malized common eigenvectors to all the transposed multipli-
cation operators that lie in the full invariant subspace asso-
ciated to e have their coordinate in x1 equal to e.

Proof. The proof can be found in [7, p.83]. �

The previous proposition gives some information about
the structure of the common eigenvectors we are looking for.
More precisely, the following theorem gives precise informa-
tion about the structure of the eigenvectors we are looking
for.

Theorem 4.3. Let α1, . . . , αk be eigenvalues of respec-
tively M t

x1 , . . . , M t
xk

. Consider the vector space

E = Eig(M t
x1 , α1) ∩ Eig(M t

x2 , α2) ∩ · · · ∩ Eig(M t
xk

, αk)

where Eig(M t
xi

, αi) denotes the full invariant subspace of the
matrix M t

xi
associated to the eigenvalue αi. Let m be a

monomial of the monomial basis B such that m = xd1
1 · · ·xdk

k

Then the common eigenvectors to all the transposed multi-
plication operators that belong to E are such that : the co-
ordinate of m in these vectors is αd1

1 · · ·αdk
k .

Proof. The considered vectors are the operators of eval-
uations at the roots. Let ζ = (ζ1, . . . , ζn) be a root of
f1, . . . , fs. By Proposition 4.2 the evaluation operator as-
sociated to ζ belongs to the vector space E if and only if
ζ1 = α1, . . . , ζk = αk. The conclusion follows easily. �

Finally, remark that now one can use the self validating
methods for eigenelements, as exposed in [15] in the method
to get an enclosure of the roots.

In the following algorithm, A, a representation of the quo-
tient algebra will be defined by fields which are :

• B are monomial basis of A as K-vector space.

• normalform a function that returns the normal form
of any polynomial p in 〈B〉.

Algorithm 3 (Undernum).

Input : A a representation of the quotient algebra
i an integer index
prec a scalar
lv = (lval, lvec) a couple (list of scalar,vectors)

Output : A list of couple (list of enclosure of scalar,

vector)

• Sol = []

• Compute M , the matrix of the restriction of Mi on the
vector space spanned by the vectors of lvec.

• Compute numerically the eigenvectors of M , and com-
pute an enclosure for all of them and their associated
eigenvalues.

• Apply the clusterization with precision prec.

• For each (clusterized) eigenvalue v of M do

– let d be the number of monomials m of A.B such
that m = xα1

1 . . . xαi
i .

– let mult be the algebraic multiplicity of v

– if mult is less than d

∗ if the vectors associated with v span a vector
space of dimension mult

· Let S = {i1, . . . , id} be the list of the in-
dexes of the monomials of A.B correspond-
ing to monomial of the form xα1

1 . . . xαi
i .

· Let W = [].

· for k in S do

W = W :: A.B[k](lval)

· Get the remaining coordinates of W ex-
pressing it as a linear combination of the
vectors associated to v.

· Sol = Sol ∪ ([], W)

– else

∗ if i == n then

· Sol = Sol ∪ (lval ∪ v, [])

∗ else

· Let le denote the list of vectors associated
to v.

· Compute le′ = Mlvle

· Using Mi, le′ and v, compute an enclo-
sure for both v and le′.

170

· let lval be the list of eigenvalues stored in
the first member of lv.

· Let estim prec be the estimated precision
on the vectors given by : estim prec =
EPSnorm(M)

SEP (i)
, where SEP (i) is smallest

singular value of the spectral projector as-
sociated to v and M (Cf. [2, 18, 8])

· Sol = Sol∪
Undernum(A, i+1, estim prec, (lval :: v, le′))

• Return Sol

Algorithm 4 (Symbonum).

Input : A a representation of the quotient algebra Output
: A certified numerical approximation of the roots of the sys-
tem f1, . . . , fs.

• Res = []

• Let C be the list of the vectors of the canonical basis.

• Tmp sol = Undernum(A, 1, η, ([], C))

• Compute the eigenvectors of M1 numerically and apply
the clusterization technique on it.

• Use the computational method given in [15] to obtain
enclosure of each cluster if it fail return FAILURE.

• For each (lval, lv) in Tmp sol do

– if lv! = [] then

∗ Determine which cluster belong the unique vec-
tor of lv.

∗ Compute the linear combinationăof the certi-
fied basis vectors that is equal to the vector of
lv

∗ Deduce the precision on the lines correspond-
ing to the variables

– else

∗ Compute de vector W , such that its coordi-
nates satisfies W [i] = eval(A.B[i], lval), i.e.
the i-th line of W contains the evaluation of
the i-th monomial of A.B at the values con-
tained in lval.

∗ Determine which cluster belong the unique vec-
tor of lv.

∗ Compute the linear combination of the certi-
fied basis vectors that is equal to the vector of
lv

∗ Deduce the precision on the lines correspond-
ing to the variables

– return Res

From what precedes, this algorithm stops and its result
is either a certified numerical approximation of the roots of
the system or FAILURE. In that latter case, one has to restart
the algorithm with a higher precision and eventually get the
desired results.

4.4 An example
Let us see how this algorithm works on an example.
Let us consider the system X2, Y 2. This example is not

radical and is known to make the simple algorithm of [7]
to fail regardless of the multiplication operator considered,
i.e. no multiplication operator allows to find (1, 0, 0, 0) as
an eigenvector.

X2, Y 2 is a Gröbner basis of (X2, Y 2) the ideal generated
by X2 and Y 2.

Let us start Algorithm 4, and compute the eigenvectors
of MX , we find:

0
BB@

0
1
0
0

1
CCA ,

0
BB@

0
0
0
1

1
CCA ,

0
BB@

ε
1
0
0

1
CCA ,

0
BB@

0
0
ε
1

1
CCA ,

where ε ≈ 10−406.
Hence the dimension of the full invariant subspace associ-

ated to the eigenvalue 0 is 4 and the numerical rank of this
family is 2, meaning that 0 is defective. So only two vectors
are kept here.

There are exactly two monomials in B = {1, x, y, xy} that
can be expressed using only the variable x, namely 1 and x.
The evaluation operator we are looking for is thus such that
it has a 1 on its first line and a 0 on its second. Looking
at these linear constraints we find out there are not enough
information to decide. So a new call to Undernum is made.

This last call finds only

0
BB@

0
0
0
1

1
CCA as eigenvector and finds

that 0 is also defective for the restricted operator. y being
the last variable, the call to Undernum ends and the certifi-
cation operations start.

Finally a certification up to 10−16 in IEEE double preci-
sion is found.

5. IMPLEMENTATION
The previous algorithms have been implemented, first in

Maple, and then in C++. Maple performances have been
disappointing, this is the reason why a C++ implementation
has been done.

The implementation is divided into three main compo-
nents:

• The routine to compute the normal form of the quo-
tient algebra, based on generalized normal forms, see
e.g. [12] for the details on how it works.

• The routine for performing the numerical root com-
puting.

• The routine to certify the clusters of the first matrix
chosen, see [15] for details.

For dense numerical linear algebra we used a modified ver-
sion of LAPACK [2], still under active development making
it possible to deal with arbitrary coefficients (not only float
or double precision coefficients but also GMP [1]). A similar
BLAS (Basic Linear Algebra Subprograms), called blas<T>,
has also been written.

Eigenvectors computation has been performed with the
routine zgeevx<T> of our library, which is essentially a QR-
multishift method with aggressive deflation (see [3]), and

171

adapted of what is already present in LAPACK for the func-
tion zgeevx.

The resulting code is roughly 2500 lines of C++ for the
main routines, and 100000 of C++ for the numerical linear
algebra routines.

We used the Boost interval library (www.boost.org) for
our implementation of interval arithmetic. Though not be-
ing the fastest nor the most complete one, it is generic with
respect to the underlying coefficient type which was our
main concern.

The actual code used here, or part of it, although not
officially released yet is freely available on simple demand.
In fact the code is still being actively worked on, and subject
to many changes/improvements.

5.1 Raw timings
We first show reported timings (see Table 1) on sample

benchmark problems which show the very high efficiency of
our method and next detail the computation actually per-
formed. The timings reported here are only concerning the
symbolic/numeric method, not including the computation
of the representation of the quotient algebra.

The computations have been performed on a Laptop run-
ning on Linux 2.6.26, with an Intel Core2 Duo 8400, with
4Go of DDR2-800 RAM. Extended precision computation
are performed with mantissa with at least 200 bits.

Table 1 represents the timing of Algorithm 4 for classi-
cal matrices arising in a wide range of applications such
as robotics, magnetism etc. The dimension of the matri-
ces varies from 10 to 1000. For each matrix, we give the
precision with which the computation has been performed
(double (64 bits), long double (80 bits) or mpf (>200 bits))
as well as the number of eigenvalue, the measured computed
time and the least accuracy of the computed eigenvalues.

Name arith Nb. sol. Time (s) Prec
cyclic5 double 70 2 1e-15
cyclic5 long double 70 3 1e-16
cyclic5 mpf class 70 103.84 <1e-50

katsura6 double 64 0.3 1e-10
katsura6 long double 64 0.91 1e-16
katsura6 mpf class 64 33.91 1e-40
katsura7 double 128 3.8 1e-10
katsura7 long double 128 7.3 1e-16
katsura7 mpf class 128 515 1e-43
katsura8 double 256 96 1e-4
katsura8 long double 256 127 1e-10
katsura8 mpf class 256 > 1h 1e-10
fabrice24 double 40 0.07 1e-8
fabrice24 long double 40 0.14 1e-11
fabrice24 mpf class 40 9 1e-41

Table 1: Timing and precision for Algorithm Sym-

bonum

The behaviour at the extended precision computations
shows that extended precision computations are rarely needed
and that they are much more slower than their native coun-
terpart. The reasons for that the is very simple : mpf-class
arithmetic is not adapted for these computations. Indeed
let us examine what happens when performing a simple op-
eration, lets say a+ = b.

This operation is translated into a call to the function

__gmp_binary_plus which involves a call to an allocator,
and the actual operation. The call to the allocator is the
main drawback since it induces two breaks in the computa-
tion flow and spoils the cache reuse. One could imagine a
template arithmetic, statically parameterized by the desired
precision that would avoid these problems. Preliminary tests
with double-double and quad-double arithmetic tend to vali-
date this idea.

Finally in order to get really efficient software, one could
imagine running in parallel several increasingly precise ver-
sions of the computational routine, the first, even if it is the
least precise, that gives a correct answer is enough. Indeed
the computational routine given in [15] is just the guarantee
that the Newton iteration converges. Hence even if the re-
quired precision is not obtained directly, it suffices to apply
the Newton procedure to refine it.

5.2 Fine Grain analysis
We present here the details of the computations performed

on cyclic5. This system is a radical ideal but has the par-
ticularity that many different roots share the same coordi-
nate. We report here how the computation behaves. The
tree shows the number of recursive calls to Undernum and
the dimension of the eigenspace considered. Remark that
some root may be found since the first step of computation
and disappears from the subsecant calls.

i=1,dim=2 i=1,dim=10

i=0,dim=70

10 3

i=3,dim=2

5

i=2,dim=4

5

What we can see here is that with three level of recursion
the numerical computation stops. This improves the algo-
rithm of [11] which would have performed two more calls.

The analysis how the computational time is spent on this
example, shows however that most of the time, more or less
66%, is spent in the first eigenvectors computation. Apart
this one, the time spent in any other small computation is
significantly smaller.

Finally, we noticed that the certification of the computa-
tion is most of the time much more time-consuming than
the numerical computation itself. However the certification
is well adapted for parallel execution.

6. CONCLUSION AND ONGOING WORK
In this article we presented a first version of an efficient

symbolic numeric technique for computing an accurate and
certified representation of the root of a multivariate polyno-
mial system. Due to a tremendous lack of time, some points
have not been investigated so far :

172

• Instead of choosing the first variable, it is much more
interesting, to avoid unneeded recursive calls to con-
sider the multiplication operator by the variable such
that the maximum number of monomial are expressed
in terms of this variable and the preceding ones (in the
computation).

• We are also investigating the idea to include the nu-
merical certification inside the computation routine,
and use its indications to propagate exact bounds e.g.
for the clusterization.

• No provision is made in the current implementation
to use other normal form engine than the one of [12].
It could be interesting to plug the present method in
some other solvers.

• Due to bad numerical behavior we were not able to
make eigenvalues computation work with stochastic
arithmetic [20, 4] which could prove invaluable form
clustering this problem is being worked on actively.

However, some preliminary work allows us to expect major
improvements in the computational timing, and allows us
to provide additional information about the clusters of root
computed.

• First of all, recursive calls can clearly be done in par-
allel, namely, recursive calls correspond to the walk
of the call-graph for the routine Undernum. Such a
description is very well suited for being implemented
as OpenMP task. We already have such a prototype
implementation and already register substantial per-
formance improvement.

• From a theoretical point of view, one can notice that al-
gebraic multiplicity is not given as an output of the al-
gorithm presented in this paper. The reason for this is
that computation are performed only with eigenspaces
and not with the full invariant subspaces. These lat-
ter objects are precisely encoding the algebraic mul-
tiplicity. Remark now that, computing numerically
eigenelements of matrices performs the computation of
an approximation of a basis of the full invariant sub-
spaces. Hence it remains to store the dimension of this
spaces and propagate them through the computation
to recover the algebraic multiplicity of the cluster.

To conclude we can summarise our algorithm as two steps :

• A first numerical computation that is currently not
certified.

• A second step that is a verification of the numerical
computations.

The main improvement of the hereabove algorithm is the use
of duality and of the structure of the evaluation operators
to avoid some recursive calls.

7. REFERENCES
[1] GMP, the GNU Multi-Precision library. Available at URL =

http://www.swox.com/gmp/.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling an A. McKenney,
S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide.
SIAM, Philadelphia, 1992. http://www.netlib.org/lapack/.

[3] Zhaojun Bai and James Demmel. On a block implementation
of hessenberg multishift qr iteration. Int. J. High Speed
Comput., 1(1):97–112, 1989.

[4] Jean-Marie Chesneaux, Stéphane Guilain, and Jean Vignes. La
bibliothèque CADNA : présentation et utilisation. Manual,
Laboratoire d’Informatique de Paris 6, Université P. et M.
Curie, Paris, France, November 1996. Available at URL =
http://www-pequan.lip6.fr/cadna/, (in French).

[5] R.M. Corless, P.M. Gianni, and B.M. Trager. A reordered
Schur factorization method for zero-dimensional polynomial
systems with multiple roots. In W.W. Küchlin, editor, Proc.
ISSAC, pages 133–140, 1997.

[6] Robert M. Corless. Gröbner bases and matrix eigenproblems.
SIGSAM Bull., 30(4):26–32, 1996.

[7] Mohamed Elkadi and Bernard Mourrain. Introduction à la
résolution des systèmes polynomiaux, volume 59 of
Mathématiques & Applications (Berlin) [Mathematics &
Applications]. Springer, Berlin, 2007.

[8] Nicholas J. Higham. Accuracy and stability of numerical
algorithms. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, second edition, 2002.

[9] Dinesh Manocha and Shankar Krishnan. Solving algebraic
systems using matrix computations. SIGSAM Bull.,
30(4):4–21, 1996.

[10] H. Michael Möller and Hans J. Stetter. Multivariate
polynomial equations with multiple zeros solved by matrix
eigenproblems. Numer. Math., 70(3):311–329, 1995.

[11] H. Michael Möller and Ralf Tenberg. Multivariate polynomial
system solving using intersections of eigenspaces. J. Symb.
Comput., 32(5):513–531, 2001.

[12] B. Mourrain and Ph. Trébuchet. Generalized normal forms and
polynomial system solving. In M. Krauers, editor, Proc.
Intern. Symp. on Symbolic and Algebraic Computation,
pages 253–260. New-York, ACM Press., 2000.

[13] Shin’ichi Oishi. Fast enclosure of matrix eigenvalues and
singular values via rounding mode controlled computation.
Linear Algebra Appl., 324(1-3):133–146, 2001. Special issue on
linear algebra in self-validating methods.

[14] F. Rouillier. Solving zero-dimensional systems through the
rational univariate representation. Journal of Applicable
Algebra in Engineering, 9:433–461, 1999.

[15] S. Rump. Computational error bounds for multiple or nearly
multiple eigenvalues. Linear Algebra and its Applications,
324:209–226, 2001.

[16] Siegfried M. Rump and Jens-Peter M. Zemke. On eigenvector
bounds. BIT, 43(4):823–837, 2003.

[17] Hans J. Stetter. Matrix eigenproblems are at the heart of
polynomial systems solving. SIGSAM Bull., 30(4):22–25, 1996.

[18] G. W. Stewart. Matrix algorithms. Vol. II. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, 2001. Eigensystems.

[19] Jan Verschelde. Algorithm 795: Phcpack: a general-purpose
solver for polynomial systems by homotopy continuation. ACM
Trans. Math. Softw., 25(2):251–276, 1999.

[20] Jean Vignes. A stochastic arithmetic for reliable scientific
computation. Math. and Comp. in Sim., 35:233–261, 1993.

173

