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ABSTRACT
Interval polynomials are useful to describe perturbed poly-
nomials. We present a graphical tool to describe how pertur-
bations of the polynomial coefficients affect its zeros without
using interval arithmetic nor matrix representation. This
tool implements real pseudozero set that differ from the well
known complex pseudozero set restricting perturbations to
be real and applied to real polynomials. We introduce a
computable formula for this real pseudozero set and compare
complex and real pseudozero sets. We propose a graphical
MATLAB interface to draw zeros of such interval polynomi-
als.

Categories and Subject Descriptors
G.4 [Mathematics of Computation]: Mathematical Soft-
ware; G.1.5 [Numerical Analysis]: Roots of Nonlinear
Equations—Error analysis, Polynomials, methods for

General Terms
Algorithms, Reliability

Keywords
Polynomial root, pseudozero set, uncertainty, perturbation,
interval arithmetic, interval polynomial

1. INTRODUCTION
The computation of polynomial roots is commonly used in

several fields of Scientific Computing and Engineering (see
for example [1, 14]). In practice, the real or complex poly-
nomial coefficients are often approximate values. Two well
known sources of approximation are data uncertainties and
rounding errors. The sensitivity of the roots with respect to
these perturbations of the polynomial coefficients has been
studied with several kinds of methods : condition number,
backward error and pseudozero set.
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Analytical sensitivity analysis introduces a condition num-
ber that bounds the magnitudes of the (first order) changes
of the roots with respect to the coefficient perturbations.
Numerous results in this direction are available, see for ex-
ample Gautschi [2] or Wilkinson [15]. When coefficient un-
certainty is represented with intervals, interval arithmetic
yields over-sets that enclose (sometimes pessimistically) the
perturbed roots [7, 6]. Continuous sensitivity analysis, intro-
duced by Ostrowski [12], considers the uncertainty of the co-
efficients as a continuity problem. The most powerful tool of
this last type of methods seems to be the pseudozero set of a
polynomial on which we focus hereafter. Roughly speaking,
it is the set of roots of polynomials that are near to a given
polynomial. Pseudozeros were introduced by Mosier [11] but
very few applications nor development have been proposed
after his work; see also a recent survey by Stetter [14].

Our motivation is to take into account the structure of
the perturbations. In this paper, we study two kinds of
pseudozero sets. The first one is the complex pseudozero
set : it is the set of complex numbers that are the roots of
polynomials with complex coefficients being near to a given
polynomial p with complex coefficients. The second one is
the real pseudozero set, that is the set of complex numbers
that are the roots of polynomials with real coefficients being
near to a given polynomial p with real coefficients.

For a given polynomial with real coefficients, it makes
sense to compute both complex and real pseudozero sets
even if the latter may be closer to the physical problem the
polynomial represents. This is the case when the polyno-
mial coefficients describe non-complex physical values, such
as in transfer function for control theory. Previous works of
the authors illustrate how the complex pseudozero set solves
stability problems in this area [3, 4]. Another motivation to
constrain the pseudozero set to describe real perturbations
comes from finite precision computation since the round-
ing error in real coefficients represented by fixed or floating
numbers is always a non-complex perturbation.

Interval real polynomials, i.e., polynomials whose coeffi-
cients are real intervals, naturally fit in this last set of per-
turbed problems. This kind of polynomial arises in robust
control theory for modeling uncertainties on the coefficients
(see [7]). We use the computable formula to compute real
pseudozero set of polynomial to derive a formula to compute
the pseudozero set of an interval polynomial.

The paper is organized as follows. In Section 2, we re-
call some definitions and known results about the complex
pseudozero set. In Section 3, we introduce the real pseu-
dozero set and we propose a computable expression for this
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set. In Section 4, we present pseudozero set of interval poly-
nomials. We relate this set to the real pseudozero set of a
given polynomial called the center of this interval polyno-
mial. Then, we present a graphical MATLAB interface to
draw such zeros.

2. COMPLEX PSEUDOZERO SET OF POLY-
NOMIALS

Let Pn(C) be the linear space of polynomials of degree
at most n with complex coefficients (n ≥ 1). Let p be a
polynomial of Pn(C) with complex coefficients pi (0 ≤ i ≤
n) such that

p(z) =

nX
i=0

piz
i.

We often identify the polynomial p with the vector of its co-
efficients (p0, p1, . . . , pn)T . Given a vector d := (d0, . . . , dn)T

in Cn+1, we will consider the weighted norm denoted ‖·‖∞,d

defined by

‖p‖∞,d = max
i=0:n

{|pi|/|di|}. (1)

The vector d allows freedom in how perturbations are mea-
sured.

The real parameter ε bounds the uncertainty in coeffi-
cients of p. Given such an ε > 0, a complex ε-neighborhood
of p is the set of all polynomials of Pn(C), close enough to
p, that is,

Nε(p) = {bp ∈ Pn(C) : ‖p− bp‖∞,d ≤ ε} .

The complex ε-pseudozero set of p is defined to include all
the zeros of the ε-neighborhood of p. A definition of this set
is

Zε(p) = {z ∈ C : bp(z) = 0 for some bp ∈ Nε(p)} .

Theorem 1 below provides a computable counterpart of this
definition.

Theorem 1 (Mosier [11]). The complex ε-pseudozero
set of p verifies

Zε(p) =


z ∈ C : g(z) :=

|p(z)|Pn
i=0 |di||z|i

≤ ε

ff
.

We recall the proof of [11].

Proof. If z ∈ Zε(p) then there exists bp ∈ Pn(C) such
that bp(z) = 0 and ‖p− bp‖∞,d ≤ ε. We can note that

|p(z)| = |p(z)−bp(z)| =
˛̨̨ nX

i=0

(pi−bpi)z
i
˛̨̨
≤ ‖p−bp‖∞,d

nX
i=0

|di||z|i.

Since ‖p− bp‖∞,d ≤ ε, it follows that

|p(z)|Pn
i=0 |di||z|i

≤ ε.

Conversely, let u ∈ C be such that |p(u)| ≤ ε
Pn

i=0 |di||z|i.
If u 6= 0, we can write u = |u|eiθ, θ ∈ [0, 2π) with |u| > 0.
Let us introduce the polynomial pu defined by

pu(z) = p(z)− p(u)Pn
j=0 |u|j

nX
j=0

e−ijθzj .

A straightforward computation shows that pu(u) = 0 and

‖p− pu‖∞,d =
|p(u)|Pn
j=0 |u|j

≤ ε.

Hence we obtain that u belongs to Zε(p).
If u = 0, let us define pu(z) = p(z) − p(u). It is clear

that pu(u) = 0. Besides, we have ‖p − pu‖∞,d = |p(u)| ≤ ε
by hypothesis. In the same way, we get that u belongs to
Zε(p).

This theorem gives us an efficient way to compute the
pseudozero set. The ε-pseudozero set of p belong to the
interior of the area defined by the contour level (of value ε)
of the normalized residual |p(z)|/

Pn
i=0 |di||z|i. MATLAB

provides primitives that allow us to easily plot pseudozero
set using the following Algorithm 1.

Algorithm 1 Computation of complex ε-pseudozero set
(MATLAB version)

Require: polynomial p and uncertainty ε
Ensure: pseudozero set layout in the complex plane
1: We grid a square containing all the roots of p with the

MATLAB command meshgrid.
2: We compute g(z) at the grid nodes z.
3: We draw the level line g(z) = ε with the MATLAB

command contourf.
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Figure 1: Pseudozero set of Wilkinson polynomial
W20 = (z − 1) · · · (z − 20) when we perturbed only the
coefficient z19 up to 2−23.

The following proposition proves that each pseudozero
component contains at least one root of the polynomial.

Proposition 1 (Mosier [11, Thm. 2]). Given p in
Pn(C) of degree n, assume that the pseudozero set Zε(p) is
bounded. If q ∈ Nε(p), then p and q have the same number of
roots, counting multiplicities, in each connected component
of Zε(p). Furthermore, there is at least one root of p in each
connected component of Zε(p).

3. REAL PSEUDOZERO SET OF POLYNO-
MIALS

Now, we introduce the real pseudozero set together with
its computable expression.
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The notations are similar to the complex case. For n ≥ 1,
let Pn(R) be the linear space of polynomials of degree at
most n with real coefficients. Let p be a polynomial of Pn(R)
with real coefficients pi such that

p(z) =

nX
i=0

piz
i.

We often identify the polynomial p with the vector of its co-
efficients (p0, p1, . . . , pn)T . Given a vector d := (d0, . . . , dn)T

in Cn+1, we will consider the weighted norm, denoted
‖ · ‖∞,d, defined by

‖p‖∞,d = max
i=0:n

{|pi|/|di|}.

The vector d allows freedom in how perturbations are mea-
sured.

Let ε be a given bound of the polynomial coefficient un-
certainties. A real ε-neighborhood of p is the set of all poly-
nomials of Pn(R), close enough to p, that is,

NR
ε (p) = {bp ∈ Pn(R) : ‖p− bp‖∞,d ≤ ε} . (2)

Then the real ε-pseudozero set of p is defined to include all
the zeros of the real ε-neighborhood of p. A definition of
this set is

ZR
ε (p) =

n
z ∈ C : bp(z) = 0 for bp ∈ NR

ε (p)
o

. (3)

For ε = 0, the pseudozero set ZR
0 (p) is the set of the roots

of p we denote Z(p).
One can easily notice that the real ε-pseudozero set ZR

ε (p)
is symmetric with respect to the real axis.

Proposition 2. The real ε-pseudozero set ZR
ε (p) is sym-

metric with respect to the real axis.

Proof. Let z ∈ ZR
ε (p). It means that there exists q ∈

NR
ε (p) such that q(z) = 0. As the polynomial q have real

coefficients, this implies that q(z) = 0. So z ∈ ZR
ε (p).

Following Theorem 2 provides a computable counterpart
of this definition. It is based on arguments developed by
Hinrichsen and Kelb in [5]. It was proved by Karow [8] using
particular perturbations of a companion matrix. Here, we
prove this result staying in the field of polynomials. We
define for x, y ∈ Rn+1,

d(x,Ry) = inf
α∈R

‖x− αy‖1,d,

the distance of a point x ∈ Rn+1 from the linear subspace
Ry = {αy, α ∈ R}. The norm ‖·‖1,d is defined for x ∈ Rn+1

by

‖x‖1,d :=

nX
i=0

|di||xi|.

Theorem 2. The real ε-pseudozero set of p verifies

ZR
ε (p) = Z(p) ∪


z ∈ C\Z(p) : d(GR(z),RGI(z)) ≥ 1

ε

ff
,

where GR(z) and GI(z) are the real and imaginary parts of

G(z) =
1

p(z)
(1, z, . . . , zn)T , z ∈ C\Z(p).

In the sequel, we denote by h the function

h(z) := d(GR(z),RGI(z)).

Proof. Let z ∈ ZR
ε (p). If p(z) = 0 then z ∈ Z(p)

else there exists q ∈ NR
ε (p) such that q(z) = 0. In this

case, we have p(z) = p(z) − q(z) = (p − q)T z, where z =
(1, z, . . . , zn)T . It follows that 1 = (p− q)T G(z). Hence we
have 1 = (p− q)T GR(u) + i(p− q)T GI(u) and so(

(p− q)T GR(u) = 1,

(p− q)T GI(u) = 0.

As a consequence, we have ‖p−q‖∞,d‖GR(u)−αGI(u)‖1,d ≥
1, for all α ∈ R. We conclude that

d(GR(u),RGI(u)) ≥ 1

‖p− q‖∞,d
≥ 1

ε
.

Conversely, let z ∈ Z(p) ∪
˘
z ∈ C\Z(p) : h(z) ≥ 1

ε

¯
. If

z belongs to Z(p) then it belongs to ZR
ε (p). Otherwise z

satisfies d(GR(z),RGI(z)) ≥ 1/ε. From a duality theo-
rem (see [9, p.119]), there exists a vector u ∈ Rn+1 with
‖u‖∞,d = 1 satisfying

uT GR(z) = d(GR(z),RGI(z)) and uT GI(z) = 0.

Let us consider the real polynomial

q = p− u

d(GR(z),RGI(z))
.

We have

q(z) = p(z)− uT z

d(GR(z),RGI(z))

= p(z)− p(z)uT G(z)

d(GR(z),RGI(z))
= 0.

Furthermore we have ‖q − p‖∞,d = 1/d(GR(z),RGI(z)). It
follows that ‖p− q‖∞,d ≤ ε.

To compute the real ε-pseudozero set ZR
ε (p), we only have

to evaluate the distance d(GR(z),RGI(z)). It is shown in [8,
Prop. 7.7.2] that

d(x,Ry) =

(
mini=0:n

yi 6=0
‖x− (xi/yi)y‖1,d if y 6= 0,

‖x‖1,d if y = 0.

Then the real pseudozero set is also the interior of the area
defined by the level contour of function h defined by Re-
lation 2. We can compute the real ε-pseudozero set with
following Algorithm 2.

Algorithm 2 Computation of real ε-pseudozero set (MAT-
LAB version)

Require: polynomial p and uncertainty ε
Ensure: pseudozero set layout in the complex plane
1: We grid a square containing all the roots of p with the

MATLAB command meshgrid.
2: We compute h(z) at the grid nodes z.
3: We draw the level line h(z) = 1/ε with the MATLAB

command contourf.

Again MATLAB provides primitives that allow us to plot
pseudozero set with Algorithm 2.

The following proposition proves that each pseudozero
component contains at least one root of the polynomial.

Proposition 3. Given p in Pn(R) of degree n, assume
that the pseudozero set ZR

ε (p) is bounded. If q ∈ NR
ε (p), then
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p and q have the same number of roots, counting multiplic-
ities, in each connected component of ZR

ε (p). Furthermore,
there is at least one root of p in each connected component
of ZR

ε (p).

The proof is similar to the one for complex pseudozero set.
Stetter [13] proved other detailed results for real pseu-

dozero set.

Proposition 4 (Stetter [13, Thm. 3.3]). Let p in
Pn(R) be a real polynomial of degree n. Let Zµ be a con-
nected component of the pseudozero set ZR

ε (p) such that p
has only one root in Zµ. Then Zµ satisfies either Zµ ⊂ R
or Zµ ∩R = ∅.

As we have seen before, the real pseudozero set is closely
related to the function d. This function can have a discon-
tinuous behavior. It is the subject of the following lemma.

Lemma 1 (Hinrichsen and Kelb [5]). The function

d : Rn+1 ×Rn+1 → R+, (x, y) 7→ d(x,Ry)

is continuous at all pairs (x, y) with y 6= 0 or x = 0 and
discontinuous at all pairs (x, 0) ∈ Rn+1 ×Rn+1, x 6= 0.

This lemma states that a discontinuity problem arises when
vector y vanishes. In our case, the discontinuity arises when
GI(z) = 0 where GI is the imaginary part GI(z) of

G(z) =
1

p(z)
(1, z, . . . , zn)T .

It follows that GI vanishes for z ∈ R, that is along the real
axis. This explains why the contour function of MATLAB
may fail and gives some bad results along the real axis. Of
course, if none of the zeros of the polynomial is real, the
real pseudozero set is correct because we do not evaluate
the function G on the real axis.

To avoid this problem, we compute in a specific way the
pseudozero set on the real axis. To do this, we use the
following lemma.

Lemma 2. Being z ∈ R, z belongs to ZR
ε (p) if and only if

z belongs to Zε(p) (complex version of the pseudozero set).

Proof. This is true because the formula involved in The-
orem 1 and in the proof stays in the real field if z is real.

4. PSEUDOZERO SET OF INTERVAL POLY-
NOMIALS

4.1 Polynomials with interval coefficients
An interval polynomial is a polynomial whose coefficients

are real intervals. We denote by IR[z] the set of interval
polynomials and by IRn[z] the set of interval polynomials
with degree at most n. Let p ∈ IRn[z]. It can be written as

p(z) =

nX
i=0

[ai, bi]z
i.

The zeros of the interval polynomial is the set (denoted Z(p))
defined by

Z(p) := {z ∈ C : there exist mi ∈ [ai, bi],

i = 0 : n such that

nX
i=0

miz
i = 0}.

We assume in the sequel that the leading interval [an, bn]
does not contain 0, because, otherwise, the set Z(p) become
unbounded. Our aim is to compute Z(p). In order to do
this, we need to introduce the center polynomial pc that
satisfies

pc(z) =

nX
i=0

ciz
i,

where ci = (ai + bi)/2. Let us denote di := (bi − ai)/2.

Proposition 5. With the notations described above, we
have

Z(p) = ZR
ε (pc) for ε = 1.

Proof. Let z ∈ C belonging to Z(p). It means that there
exist mi ∈ [ai, bi] such that m(z) =

Pn
i=0 miz

i = 0. Let pc

the center polynomial defined as above. By definition of pc,
we have

‖mi − pc
i‖∞,d = max

i=0:n
{|mi − pc

i |/|di|} ≤ 1,

since di := (bi − ai)/2 and pc
i = (bi + ai)/2. It follows that

z belongs to ZR
ε (pc) with ε = 1. Conversely, let z belonging

to ZR
ε (pc). It means that there exists a polynomial q such

that ‖q − pc‖∞,d ≤ 1. Then it follows that maxi=0:n{|qi −
pc

i |/|di|} ≤ 1. A simple calculation shows that ai ≤ qi ≤ bi

and so z ∈ Z(p).

Now we have a computable formula to draw pseudozero
set of an interval polynomial. The only problem left to deal
with is to find a grid that contains the whole pseudozero set.
This is solved thanks to the following lemma.

Lemma 3. Let p(z) =
Pn

i=0[ai, bi]z
i be an interval poly-

nomial. Let

R := 1 +
maxi=0:n{max{|ai|, |bi|}}

min{|an|, |bn|}
.

Then we have,

Z(p) ⊂ B(O, R),

where B(O, R) denotes the ball of the complex plane C of
center O and radius R.

Proof. Let us denote by {zj}j=1:n the roots of a polyno-
mial p counting with their multiplicities and r = maxj |zj |.
It is well known (see [10, p.154]) that

r ≤ 1 +
max{|pn−1|, |pn−2|, . . . , |p0|}

|pn|
. (4)

Let z belonging to Z(p). Then there exists a polynomial
m(z) =

Pn
i=0 miz

i such that m(z) = 0 and ai ≤ mi ≤ bi

for i = 0 : n. It is easy to see that |mi| ≤ max{|ai|, |bi|} and
|mn| ≥ min{|an|, |bn|}. By applying (4), it follows that

|z| ≤ 1 +
maxi=0:n{max{|ai|, |bi|}}

min{|an|, |bn|}
.

4.2 Presentation of PSIP
PSIP (Pseudozero Set of Interval Polynomials) is a GUI

(Graphical User Interface) that integrates MATLAB rou-
tines for drawing pseudozero set of interval polynomials.
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Figure 2: Pseudozero sets of two interval polynomi-
als p(z) = [1, 2]z4 + [3/2, 3]z3 + [10, 14]z2 + [3, 5

√
2]z + [5, 7]

The code has been written and tested with MATLAB ver-
sions 6.5 (R13).

Inputs are the degree and the interval coefficients. This
GUI provides interesting facilities to perform a graphical
analysis of the pseudozero set, the PSIP output. For exam-
ple, the user can zoom to any desired box area or manually
define it. Of course we suppose the leading coefficient of the
interval polynomial does not contain 0, since otherwise, the
pseudozero set is not bounded. The previously described
discontinuities on the real axis can sometimes generate de-
tail problems when drawing near this real axis.

Figure 3: Graphical User Interface of PSIP with the
pseudozero set of the interval polynomial p(z) = z5 +
[1.20, 2.73]z4 + [1.14, 3.15]z3 + [0.20, 2.35]z2 + [1.52, 6.21]z +
[0.15, 7.11]

5. CONCLUSION AND FUTURE WORK
We have proposed a computable formula for the real pseu-

dozero set. Identifying this set is motivated from data er-
rors and rounding errors that corrupt the coefficients of real
polynomials. We have applied this formula to compute the
pseudozero set of an interval polynomial. The presented
Graphical User Interface integrates MATLAB routines to

draw such pseudozero sets of interval polynomials and per-
form qualitative analysis.

An important issue is that we cannot certify the drawing
since we use the Matlab command contourf. An idea to
find an inner and outer approximation of the pseudozero
set should be to use the Sivia algorithm from Jaulin and
Walter [7].
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