
Improving the Compensated Horner Scheme
with a Fused Multiply and Add

Stef Graillat Philippe Langlois Nicolas Louvet
Laboratoire LP2A, Université de Perpignan Via Domitia

52, avenue Paul Alduy, F-66860 Perpignan, France

[graillat, langlois, nlouvet]@univ-perp.fr

ABSTRACT
Several different techniques and softwares intend to improve
the accuracy of results computed in a fixed finite precision.
Here we focus on a method to improve the accuracy of the
polynomial evaluation. It is well known that the use of the
Fused Multiply and Add operation available on some micro-
processors like Intel Itanium improves slightly the accuracy
of the Horner scheme. In this paper, we propose an accurate
compensated Horner scheme specially designed to take ad-
vantage of the Fused Multiply and Add. We prove that the
computed result is as accurate as if computed in twice the
working precision. The algorithm we present is fast since
it only requires well optimizable floating point operations,
performed in the same working precision as the given data.

Categories and Subject Descriptors
G.4 [Mathematics of Computation]: Mathematical Soft-
ware—Reliability and robustness; G.4 [Mathematics of
Computation]: Mathematical Software—Efficiency

General Terms
Algorithms, Reliability, Performance

Keywords
IEEE-754 floating point arithmetic, error-free transforma-
tions, polynomial evaluation, Horner Scheme, Fused Multi-
ply and Add

1. INTRODUCTION
One of the three main processes associated with polynomi-

als is evaluation, the two other ones being interpolation and
root finding. Higham [7, chap. 5] devotes an entire chapter
to polynomials and more especially to polynomial evalua-
tion. The small backward error the Horner scheme intro-
duce when evaluated in finite precision justifies its practical
interest in floating point arithmetic for instance. It is well

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06April 23-27, 2006, Dijon, France
Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

known that the computed evaluation of p(x) is the exact
value at x of a polynomial obtained by making relative per-
turbations of at most size 2nu to the coefficients of p where
n denotes the polynomial degree and u the finite precision
of the computation [7]. Nevertheless, the computed result
can be arbitrary less accurate than the working precision u
when evaluating p(x) is ill-conditioned. This is the case for
example in the neighborhood of multiple roots where all the
digits or even the order of the computed value of p(x) could
be false. The classic condition number that describes the
evaluation of p(x) =

Pn
i=0 aix

i with complex coefficients at
x is

cond(p, x) =

Pn
i=0 |ai||x|i

|
Pn

i=0 aixi| =
p(x)

|p(x)| . (1)

When the computing precision is u, evaluating p(x) is ill-
conditioned when 1 � cond(p, x) ≤ u−1. If the coefficients
of p are exact numbers in precision u, we can also con-
sider extremely ill-conditioned evaluations, i.e., such that
cond(p, x) > u−1.

A possible way to improve the accuracy of the computed
evaluation is to increase the working precision. For this pur-
pose, numerous multiprecision libraries are available when
the computing precision u is not sufficient to guarantee a
prescribed accuracy [1, 10]. Fixed-length expansions such
as “double-double” or “quad-double” libraries [6] are ac-
tual and effective solutions to simulate twice or four times
the IEEE-754 double precision [8]. For example a double-
double number is an unevaluated sum of two IEEE-754 dou-
ble precision numbers and its associated arithmetic provides
at least 106 bits of significand.

In [4] we have presented a fast and accurate algorithm
for the polynomial evaluation. This compensated Horner
scheme only requires an IEEE-754 like floating point arith-
metic, and uses a single working precision with rounding to
the nearest. We have proven that the computed result r
is of the same accuracy as if computed in doubled working
precision. This means that the accuracy of the computed
result r satisfies

|r − p(x)|
|p(x)| ≤ u + (αu)2 cond(p, x), (2)

with α a moderate constant. The second term in the right
hand side of Relation (2) reflects computations in doubled
working precision, and the first one rounding back to the
working precision. The key tool to introduce more accuracy
is what Ogita, Rump and Oishi call error-free transforma-
tions (EFT) in [12]: “it is for long known that the approxi-
mation error of a floating point operation is itself a floating

1323

point number”. It means that for two floating point num-
bers a and b, and ◦ an arithmetic operator in {+,−,×}, it
exists a floating point number e, computable with floating
point operations, such that

a ◦ b = fl (a ◦ b) + e,

where fl (·) denotes floating point computation. The EFT of
the sum of two floating point number is computable using
the well know algorithm 2Sum by Knuth [9]. 2Product by
Veltkamp and Dekker [3] is also available for the EFT of the
product.

The Fused Multiply and Add instruction (FMA) is avail-
able on some current processors, such as the IBM Power PC
or the Intel Itanium. Given a, b and c three floating point
point values, this instruction computes the expression ab+c
with only one final rounding error. The FMA can be used
to improve algorithms based on error-free transformations
in two ways. First, it allows us to compute the EFT for the
product of two foating point values in a very efficient way:
algorithm 2ProductFMA presented hereafter computes this
EFT in only two flops when a FMA is available [11]. On
the other hand, an algorithm that computes an EFT for the
FMA has been recently proposed by Boldo and Muller [2].
In particular, the authors have proven that the EFT for the
FMA has to be expressed as the sum of three floating point
numbers. Assuming an IEEE-754 like floating point arith-
metic with round to the nearest rounding mode, algorithm
3FMA computes three floating point numbers x, y and z
such that

ab + c = x + y + z with x = FMA (a, b, c) .

Both 2ProductFMA and 3FMA can be used to improve the
compensated Horner scheme presented in [4].

In this paper, we focus on the use of 2ProductFMA, and
we present the corresponding compensated Horner scheme
denoted by CompHornerFMA. The proposed algorithm is as
accurate as the classic Horner scheme performed in twice
the working precision, i.e., the accuracy of the computed
result sastifies Relation (2). Experimental results show that
time penalty due to this improvement of the precision is
quite reasonable: our algorithm is not only fast in terms of
floating point operations (flops) count, but also in terms of
execution time.

By lack of the space most of our proofs are omitted. Nev-
ertheless, the interested reader can refers to our research re-
port [5] (available at http://webdali.univ-perp.fr), where our
compensated Horner scheme based on 3FMA is also detailed.

The paper is organized as follows. We present the classic
assumptions about floating point arithmetic and our nota-
tions for error analysis in Section 2. In Section 3, we briefly
review the algorithms for the EFT of the summation and the
product of two floating point numbers, and we present the
algorithm for the EFT of the FMA. We also introduce the
EFT we use for the Horner scheme. In Section 4, we describe
our compensated algorithm for the polynomial evaluation.
The computed result is of the same accuracy as if computed
in doubled working precision. Numerical experiments for
extremely ill-conditioned evaluations are presented in Sec-
tion 5 to exhibit the practical efficiency of our implementa-
tion, with respect to both accuracy and computing time.

2. FLOATING POINT ARITHMETIC AND
HORNER SCHEME

2.1 Standard model
The notations used throughout the paper are presented

hereafter. Most of them come from [7, chap. 2]. As in the
previous section, fl (·) denotes the result of a floating point
computation. The symbols ⊕, 	, ⊗ and �, representing
respectively the floating point addition, subtraction, multi-
plication and division (e.g., a⊕ b = fl (a + b)). Throughout
the paper, we assume a floating point arithmetic adhering to
the IEEE-754 floating point standard [8]. As already said,
we also assume that a FMA is available. We constraint all
the computations to be performed in one working precision,
with round to the nearest rounding mode. We assume that
no overflow nor underflow occur during the computations.
u denotes the relative error unit, that is half the spacing
between 1 and the next representable floating point value.
For IEEE-754 double precision with round to the nearest, we
have u = 2−53 ≈ 1.11 · 10−16. When no underflow occurs,
the following standard model describes the accuracy of ev-
ery considered floating point computation. For two floating
point numbers a and b and for ◦ in {+,−,×, /}, the floating
point evaluation fl (a ◦ b) of a ◦ b is such that

fl (a ◦ b) = (a ◦ b)(1 + ε1) = (a ◦ b)/(1 + ε2),

with |ε1|, |ε2| ≤ u. (3)

Given a, b and c three floating point values, the result of
FMA (a, b, c) is the exact result ab+c rounded to the nearest
floating point value. Therefore, we also have

FMA (a, b, c) = (ab + c)(1 + ε1) = (ab + c)/(1 + ε2),

with |ε1|, |ε2| ≤ u. (4)

For any positive integer k, we denote γk = k u
1−k u

. When
using this notation, we always implicitly assume k u < 1.

2.2 The Horner scheme
The Horner scheme is the classic method to evaluate a

polynomial p(x) =
Pn

i=0 aix
i (Algorithm 1). For any float-

ing point value x we denote Horner (p, x) the result of the
floating point evaluation of the polynomial p at x using the
Horner scheme.

Algorithm 1. Horner scheme

function [r0] = Horner (p, x)
rn = an

for i = n− 1 : −1 : 0
ri = ri+1 ⊗ x⊕ ai

end

The accuracy of the computed evaluation is linked to the
condition number of the polynomial evaluation,

|p(x)− Horner (p, x) |
|p(x)| ≤ γ2n

p(x)

|p(x)| = γ2n cond(p, x), (5)

where p(x) =
Pn

i=0 |ai||xi| (see [7, p.95]). Clearly, the con-
dition number cond(p, x) can be arbitrarily large. In partic-
ular, when cond(p, x) > γ−1

2n , we cannot guarantee that the
computed result Horner (p, x) contains any correct digit.

If a FMA instruction is available on the considered archi-
tecture, then we can change the line ri = ri+1 ⊗ x ⊕ ai in
algorithm 1 by ri = FMA (ri+1, x, ai). This gives the follow-
ing algorithm HornerFMA (Algorithm 2).

1324

Table 1: Description of the experimented routines,
and of the experimental environments
Experimental environments:
• (I): Intel Itanium I, 733MHz, GNU GCC 2.96
• (II): Intel Itanium II, 900MHz, GNU GCC 3.3.5
• (III): Intel Itanium II, 1.6GHz, GNU GCC 3.3.3
Experimented routines:
• HornerFMA (Algorithm 2)
• CompHornerFMA (Algorithm 6)
• DDHornerFMA: internal double-double computation

Algorithm 2. Horner scheme with a FMA

function [r0] = HornerFMA (p, x)
rn = an

for i = n− 1 : −1 : 0
ri = FMA (ri+1, x, ai)

end

With this method, the flops count is divided by two, and
the error bound is slightly improved, since now,

|p(x)− HornerFMA (p, x) |
|p(x)| ≤ γn cond(p, x). (6)

3. ERROR FREE TRANSFORMATIONS

3.1 EFT for the elementary operations
For ◦ in {+,−,×}, it is well known that the elementary

rounding error y occuring in the computation of x = fl (a ◦ b)
is a floating point value, and is computable using only float-
ing point operations. Thus, for ◦ in {+,−,×}, any pair
of floating point inputs (a, b) can be transformed into an
output pair (x, y) of floating point numbers such that

a ◦ b = x + y and x = fl (a ◦ b) .

Let us emphasize that this relation between these four float-
ing point values relies on real operators and exact equality
(not on approximate floating point counterparts). Ogita et
al. [12] call such a transformation an error free transforma-
tion (EFT).
The EFT for the addition is given by the well known 2Sum
algorithm by Knuth [9]. 2Sum (Algorithm 3) requires 6 flops
(floating point operations).

Algorithm 3. EFT for the sum.

function [x, y] = 2Sum (a, b)
x = a⊕ b
z = x	 a
y = (a	 (x	 z))⊕ (b	 z)

For the EFT of the product, we could use the well know
algorithm 2Product by Dekker and Veltkamp [3]. This al-
gorithm requires 17 flops, with no branch nor access to the
mantissa. But as the FMA instruction is available, we can
use the following method instead [11, 12]. For a, b and c
three floating point values, we recall that FMA (a, b, c) is the
exact result a× b + c rounded to the nearest floating point
value. Since y = a× b− a⊗ b, then y = FMA (a, b,−(a⊗ b))
and 2Product can be replaced by Algorithm 4 which requires
only 2 flops.

Algorithm 4. EFT for the product.

function [x, y] = 2ProductFMA (a, b)
x = a⊗ b
y = FMA (a, b,−x)

We sum up the properties of these algorithms in the follow-
ing theorem.

Theorem 1 ([12]). Given two floating point numbers
a and b, let x and y the two floating point values such that
[x, y] = 2Sum(a, b) (Algorithm 3). Then,

a + b = x + y, with x = a⊕ b, |y| ≤ u|x|
and |y| ≤ u|a + b|.

Given two floating point numbers a and b, let x and y the two
floating point values such that [x, y] = 2ProductFMA(a, b)
(Algorithm 4). Then,

a× b = x + y, with x = a⊗ b, |y| ≤ u|x|
and |y| ≤ u|a× b|.

3.2 An EFT for the Horner scheme
We now propose an EFT for the polynomial evaluation

with the Horner scheme. This EFT is based on algorithms
2Sum and 2ProductFMA. The proof of Theorem 2 can be
found in [5].

Algorithm 5. EFT for the Horner scheme

function [Horner (p, x) , pπ, pσ] = EFTHorner(p, x)
sn = an

for i = n− 1 : −1 : 0
[pi, πi] = 2ProductFMA (si+1, x)
[si, σi] = 2Sum (pi, ai)
Let πi be the coefficient of degree i in pπ

Let σi be the coefficient of degree i in pσ

end
Horner (p, x) = s0

Theorem 2. Let p(x) =
Pn

i=0 aix
i be a polynomial of de-

gree n with floating point coefficients, and let x be a floating
point value. Then Algorithm 5 computes both

• the floating point evaluation Horner (p, x) (Algorithm 1),

• two polynomials pπ and pσ of degree n−1 with floating
point coefficients,

and we write

[Horner (p, x) , pπ, pσ] = EFTHorner (p, x) .

Then,

p(x) = Horner (p, x) + (pπ + pσ)(x), (7)

and we have

(pπ + pσ)(x) ≤ γ2np(x). (8)

Relation (7) means that EFTHorner is an EFT for the poly-
nomial evaluation with the Horner scheme. Algorithm 5
requires 8n flops.

4. COMPENSATED HORNER SCHEME
From Theorem 2 the global forward error affecting the

floating point evaluation of p at x according to the Horner
scheme is

e(x) = p(x)− Horner (p, x) = (pπ + pσ)(x),

1325

Table 2: Measured time performances for Com-
pHornerFMA and DDHornerFMA.

environment CompHornerFMA/HornerFMA
min. mean max. theo.

(I) 2.4 2.9 3.0 10
(II) 2.2 2.7 2.8 10
(III) 2.2 2.7 2.8 10

environment DDHornerFMA/HornerFMA
min. mean max. theo.

(I) 4.8 7.1 7.4 20
(II) 5.1 8.2 8.4 20
(III) 5.1 8.2 8.4 20

where the two polynomials pπ and pσ are exactly computed
by EFTHorner (Algorithm 5), together with the approximate
HornerFMA (p, x). Therefore, the key of the following algo-
rithm is to compute an approximate of the global error e(x)
in working precision, and then to compute a corrected result

res = Horner (p, x)⊕ fl (e(x)) .

We say that c = fl (e(x)) is a corrective term for Horner (p, x).
The corrected result res is expected to be more accurate
than the first result Horner (p, x) as proved in the sequel of
the section. We compute an approximate of the correcting
term c by evaluating the polynomial whose coefficients are
those of pπ +pσ rounded to the nearest floating point value.

4.1 The compensated algorithm
EFTHorner is used in the following algorithm to compute

the corrected result. We have proven hereafter that the re-
sult of a polynomial evaluation computed with the compen-
sated Horner scheme (Algorithm 6) is as accurate as if com-
puted by the classic Horner scheme using twice the working
precision and then rounded to the working precision. Com-
pHornerFMA requires 10n− 1 flops.

Algorithm 6. Compensated Horner scheme

function [res] = CompHornerFMA (p, x)
[h, pε, pϕ] = EFTHorner (p, x)
c = HornerSumFMA (pε, pϕ, x)
res = h⊕ c

Theorem 3. Given a polynomial p =
Pn

i=0 aix
i of de-

gree n with floating point coefficients, and x a floating point
value. We consider the result CompHornerFMA (p, x) com-
puted by Algorithm 6. Then,

|CompHornerFMA (p, x)− p(x)| ≤ u|p(x)|+ (1 + u)γ2
np(x).

It is very interesting to interpret the previous theorem with
respect to the condition number of the polynomial evalu-
ation of p at x. Combining the error bound in Theorem 3
with the expression of the condition number (1) for the poly-
nomial evaluation gives the following relation,

|CompHornerFMA (p, x)− p(x)|
|p(x)| ≤ u + γ2

2n cond(p, x). (9)

Proof. From Theorem 2, p(x) = h + (pπ + pσ)(x), thus

|CompHornerFMA (−) p(x)| ≤ u|p(x)|+(1+u)|(h+c)−p(x)|.

Since c = HornerFMA (pπ ⊕ pσ, x), a standard error analysis
yields

|(h + c)− p(x)| ≤ γn(pπ + pσ)(x) ≤ γn(pπ + pσ)(x).

Next, we use Relation (8) to obtain

|(h + c)− p(x)| ≤ γnγ2np(x) ≤ γ2
2np(x).

This proves the result. For a more detailed proof see [5].

In practical applications, we have γ2
2n ≈ u2. In other

words, the bound for the relative error of the computed
result is essentially u2 times the condition number of the
polynomial evaluation, plus the inevitable summand u for
rounding the result to the working precision. In particular,
if cond(p, x) . u−1, then the relative accuracy of the result
is bounded by a constant of the order u. This means that
the compensated Horner scheme computes an evaluation ac-
curate to the last few bits as long as the condition number
is smaller than u−1. Besides that, Relation (9) tells us that
the computed result is as accurate as if computed by the
classic Horner scheme with twice the working precision, and
then rounded to the working precision.

5. EXPERIMENTAL RESULTS
All our experiments are performed using IEEE-754 dou-

ble precision. Since the double-doubles [6] are usually con-
sidered as the most efficient portable library to double the
IEEE-754 double precision, we consider it as a reference in
the following comparisions. For our purpose, it suffices to
know that a double-double number a is the pair (ah, al) of
IEEE-754 floating point numbers with a = ah+al and |al| ≤
u|ah|. This property implies a renormalisation step after
each arithmetic operation. We denote by DDHornerFMA
our implementation of the Horner scheme with the double-
double format, based on the implementation proposed by
the authors of [6]. We notice that the double-double arith-
metic naturally benefites from the availability of a FMA
instruction: DDHornerFMA uses 2ProductFMA in the in-
ner loop of the Horner scheme. DDHornerFMA requires 20n
flops.

Accuracy of the compensated Horner scheme
We test the expanded form of the polynomial pn(x) = (x−
1)n. The argument x is chosen near to the unique real root
1 of pn. Here we have

cond(pn, x) =
pn(x)

|pn(x)| =

˛̨̨̨
1 + |x|
1− x

˛̨̨̨n

,

and cond(pn, x) grows exponentially with respect to n. In
the experiments reported on Figure 1, we choose x = fl (1.333);
cond(pn, x) varies from 102 to 1040, that corresponds to the
degree range n = 3, . . . , 42. These huge condition numbers
have a sense since here the coefficients of p and the value x
are floating point numbers.

We experiment both HornerFMA, CompHornerFMA and
DDHornerFMA (see Table 1). Figure 1 presents the relative
accuracy |y − pn(x)|/|pn(x)| of the evaluation y computed
by the three algorithms. The dotted lines represent the a
priori error estimates (6) and (9). We observe that our
compensated algorithm exhibits the expected behavior. The
full precision solution is computed as long as the condition
number is smaller that u−1 ≈ 1016. Then, for condition
numbers between u−1 and u−2 ≈ 1032, the relative error
degrades to no accuracy at all, as the computing precision
is u.

1326

1e-18

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

100000 1e+10 1e+15 1e+20 1e+25 1e+30 1e+35

re
la

tiv
e

fo
rw

ar
d

er
ro

r

condition number

Condition number and relative forward error

u

γn cond u + γ2n
2 cond

HornerFMA
CompHornerFMA

DDHorner

Figure 1: Accuracy of the three experimented rou-
tines.

Time performances
All the algorithms are implemented in C-code. The exper-
imental environments are listed in Table 1. Our measures
are performed with polynomials whose degrees vary from
5 to 450 by steps of 5. For each degree, the routines are
tested on the same polynomial with the same argument.
Table 2 displays the time ratios of CompHornerFMA and
DDHornerFMA over HornerFMA. We have reported the min-
imum, the mean and the maximum these ratios, together
with the theoretical ratios resulting from the number of
flops involved by each algorithm. First, we have to no-
tice that the measured slowdown factor introduced either
by CompHornerFMA or DDHornerFMA is always significantly
smaller than theoretically expected. This interesting prop-
erty seems to be due to the fact that the classic algorithm
performs only one operation with each coefficient of the
polynomial, whereas CompHornerFMA and DDHornerFMA
perform much more operations with each coefficient. The
results reported in Table 2 show that our compensated al-
gorithm CompHornerFMA is about 3 times slower than the
classic Horner scheme. The same slowdown factor is about 7
for algorithm DDHornerFMA. Thus, from a practical point of
view, we can state that the proposed algorithm is more than
twice faster than the Horner scheme with double-doubles.

6. CONCLUDING REMARKS
We have presented an accurate evaluation of univariate

polynomials in IEEE-754 floating point arithmetic when a
FMA is available. We have proved that the accuracy is
similar to the one given by the Horner scheme performed
in doubled working precision. This CompHornerFMA algo-
rithm uses only basic floating point operations, and only the
same working precision as the data. It uses no branch nor
access to the mantissa that can be time consuming on mod-
ern architectures. As a result, it is fast not only in terms of
flops count but also in terms of measured computing time.
In particular, CompHornerFMA runs only about three times
slower than the classic Horner scheme, but faster than other
existing alternatives that garantee the same output accu-
racy.

We have noticed that another improvement of the com-
pensated Horner scheme exists with a FMA. Using 3FMA

we also improve the compensated Horner scheme with the
same output accuracy [5]. Nevertheless, experimental re-
sults reported in [5] show that such an implementation runs
about twice slower than CompHornerFMA. Algorithm Com-
pHornerFMA here presented seems thus to be the most ef-
ficient alternative to improve the accuracy of the Horner
scheme.

7. REFERENCES
[1] D. H. Bailey. Algorithm 719, multiprecision

translation and execution of Fortran programs. ACM
Trans. Math. Software, 19(3):288–319, 1993.

[2] S. Boldo and J.-M. Muller. Some functions
computable with a fused-mac. In IEEE, editor,
Proceedings of the 17th IEEE Symposium on
Computer Arithmetic, 2005, Cape Cod, Massachusetts,
USA. IEEE Computer Society Press, 2005.

[3] T. J. Dekker. A floating-point technique for extending
the available precision. Numer. Math., 18:224–242,
1971.

[4] S. Graillat, P. Langlois, and N. Louvet. Compensated

Horner scheme. Research Report 4, Équipe de
recherche DALI, Laboratoire LP2A, Université de
Perpignan Via Domitia, France, 52 avenue Paul
Alduy, 66860 Perpignan cedex, France, July 2005.
Submitted to SIAM J. Sci. Comput.

[5] S. Graillat, P. Langlois, and N. Louvet. Improving the
compensated Horner scheme with a fused multiply
and add. Research Report 5, Équipe de recherche
DALI, Laboratoire LP2A, Université de Perpignan
Via Domitia, France, 52 avenue Paul Alduy, 66860
Perpignan cedex, France, Nov. 2005.

[6] Y. Hida, X. S. Li, and D. H. Bailey. Algorithms for
quad-double precision floating point arithmetic. In
N. Burgess and L. Ciminiera, editors, Proceedings of
the 15th Symposium on Computer Arithmetic, Vail,
Colorado, pages 155–162, Los Alamitos, CA, USA,
2001. Institute of Electrical and Electronics Engineers.

[7] N. J. Higham. Accuracy and Stability of Numerical
Algorithms. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, second edition,
2002.

[8] IEEE Standards Committee 754. IEEE Standard for
binary floating-point arithmetic, ANSI/IEEE Standard
754-1985. Institute of Electrical and Electronics
Engineers, Los Alamitos, CA, USA, 1985. Reprinted
in SIGPLAN Notices, 22(2):9-25, 1987.

[9] D. E. Knuth. The Art of Computer Programming:
Seminumerical Algorithms, volume 2. Addison-Wesley,
Reading, MA, USA, third edition, 1998.

[10] The MPFR library. Available at http://www.mpfr.org.

[11] Y. Nievergelt. Scalar fused multiply-add instructions
produce floating-point matrix arithmetic provably
accurate to the penultimate digit. ACM Trans. Math.
Software, 29(1):27–48, 2003.

[12] T. Ogita, S. M. Rump, and S. Oishi. Accurate sum
and dot product. SIAM J. Sci. Comput.,
26(6):1955–1988, 2005.

1327

