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Abstract. The pseudozero set of a system P of polynomials in n vari-
ables is the subset of Cn consisting of the union of the zeros of all poly-
nomial systems Q that are near to P in a suitable sense. This concept
arises naturally in Scientific Computing where data often have a lim-
ited accuracy. When the polynomials of the system are polynomials with
complex coefficients, the pseudozero set has already been studied. In this
paper, we focus on the case where the polynomials of the system have
real coefficients and such that all the polynomials in all the perturbed
polynomial systems have real coefficients as well. We provide an explicit
definition to compute this pseudozero set. At last, we analyze different
methods to visualize this set.

1 Introduction and notation

1.1 Summary

Polynomials appear in almost all areas in scientific computing and engineer-
ing as it is shown in the Computer Algebra Handbook [6] and in [4]. Most of
the applications need to solve equations involving polynomials and systems of
polynomials, often in many variables. The relationships between industrial ap-
plications and polynomial systems solving were studied by the European Com-
munity Project FRISCO. The report may be found at http://www.nag.co.uk/
projects/FRISCO.html. They gave a list of the major fields where polynomial
systems are used: Computer Aided Design and Modeling, Mechanical Systems
Design, Signal Processing and Filter Design, Civil Engineering, Robotics, Sim-
ulation. The wide range of use of polynomial systems needs to have fast and
reliable methods to solve them. Roughly speaking, there are two general ap-
proaches: symbolic and numeric. The symbolic approach is based either on the
theory of Gröbner basis or on the theory of resultants. For the numeric approach,
it is the use of iterative methods like Newton’s method or homotopy continua-
tion methods. Recently, hybrid methods, combining both symbolic and numeric
methods, began to appear (see the chapter called “Hybrid Methods” by Kaltofen
in [6, p.112-128]).

In practice, from situations arising in science or engineering, the data are
known only to a limited accuracy. From a polynomial point of view, this only
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means that the coefficients of the polynomials are known only to within a certain
tolerance. Then it is important to obtain informations about the variation of the
zeros of the polynomial or of the polynomial system in the presence of uncer-
tainty on the coefficients. Analytical sensitivity analysis introduces a condition
number that bounds the magnitudes of the (first order) changes of the roots
with respect to the coefficient perturbations. Numerous results in this direction
are available, see for example Gautschi [5] or Wilkinson [26]. Representing coef-
ficient uncertainty with intervals and computing with interval arithmetic yield
over-sets that enclose (sometimes pessimistically) the perturbed roots. Continu-
ous sensitivity analysis, introduced by Ostrowski [19], considers the uncertainty
of the coefficients as a continuity problem. The most powerful tool of this last
type of methods seems to be the pseudozero set of a polynomial we focus here-
after. Roughly speaking, this is the set of roots of polynomials that are near to
a given polynomial.

The pseudozero set was first introduced by Mosier [18] in 1986. He stud-
ied this set considering perturbations bounded with the ∞-norm. Trefethen and
Toh [25] studied pseudozero set for perturbations bounded with the 2-norm.
They also compared the pseudozero set of a given polynomial with the pseu-
dospectra of the associated companion matrix. These results are summarized in
Chatelin and Frayssé’s book on finite precision [2]. More recently, Zhang [27]
compared pseudozero set with respect to the choice of the polynomial basis
(power, Taylor, Chebyshev, Bernstein). At last, recently, Stetter gave a general
framework for working with inexact polynomials in his book [24] (based on pre-
vious papers [21–23]). The notion of root sets was introduced by Hinrichsen and
Kelb [12]. It is a particular case of the spectral value sets of the companion
matrix using structured perturbations. It corresponds exactly to the notion of
pseudozero set but from a different viewpoint. Such a set was studied in partic-
ular by Hinrichsen and Kelb [12], Karow [16] and Hinrichsen and Pritchard [13].

Nevertheless, few applications of pseudozero set have been given in these pre-
vious publications, except when Bini and Fiorentino provided a multiprecision
algorithm to compute polynomial root using pseudozero set [1]. Indeed, they
need to know if an approximate root is a root of a nearby polynomial. Pseu-
dozero set is the natural way to answer this question. More recently, Graillat
and Langlois [7–10] gave some applications of pseudozero set in Computer Alge-
bra and in Control Theory. They provide in these articles an algorithm to test
the approximate primality of two univariate polynomials. They also propose an
algorithm to compute the stability radius of an univariate polynomial.

The major part of the papers cited above consider only the univariate case.
The multivariate case seems to have received few attention. It has only been
studied by Stetter in [22, 24], by Hoffman, Madden and Zhang in [14] and Corless,
Kai and Watt in [3]. Furthermore, the multivariate case has only been dealt with
polynomials with complex coefficients. In this paper, we consider systems where
polynomials have real coefficients and such that all the polynomials in all the
perturbed polynomial systems have real coefficients as well. We provide a simple
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criterion to compute the pseudozero set and study different methods to visualize
it.

The rest of the paper is organized as follows. In the rest of this Section, we
introduce some notations and well-known results on basic linear algebra and
computer algebra. In Section 2, we recall results on complex pseudozero set. In
Section 3, we study real pseudozero set and establish a computable criterion for
this pseudozero set. In Section 4, we present different methods to visualize the
pseudozero set.

1.2 Notation

We recall the notations used in Stetter [24]. A monomial in the n variables
z1, . . . , zn is the power product

zj := zj1
1 · · · zjn

n , with j = (j1, . . . , jn) ∈ INn;

j is the exponent and |j| :=
∑n

σ=1 jσ the degree of the monomial zj .

Definition 1. A complex (real) polynomial in n variables is a finite linear com-
bination of monomials in n variables with coefficients from C (from IR),

p(z) = p(z1, . . . , zn) =
n∑

(j1,...,jn)∈J

aj1···jn
zj1
1 · · · zjn

n =
∑
j∈J

ajz
j .

The set J ⊂ INn which contains the exponents of those monomials which are
present in the polynomial p is called the support of p. The total degree of p is
defined to be the number deg(p) := maxj∈J |j|. The set of all complex (real)
polynomials in n variables will be denoted by Pn(C) (by Pn(IR)). When the
coefficient domain is evident or is not important, the notation Pn will be used.
The notation Pn

d ⊂ Pn stands for the set of polynomials in n variables of total
degree ≤ d. As we will often manipulate polynomials with linear operations,
we will widely employ the notations of linear algebra. We will generally collect
the coefficients of a polynomial into a vector a = (. . . , aj , . . . , j ∈ J)T and its
monomials into a vector z = (. . . , zj , . . . , j ∈ J)T .

Let p =
∑

j∈J ajz
j ∈ Pn(IK) with IK = IR or C be a polynomial in n vari-

ables and J be its support. We denote by |J | the number of elements of J . If
|J | = M and let ‖·‖ be a norm on IKM , we denote by ‖p‖ the norm of the vector
a = (. . . , aj , . . . , j ∈ J), namely,

‖p‖ := ‖(. . . , aj , . . . , j ∈ J)T ‖.

Given such an ε > 0, the ε-neighborhood Nε(p) of the polynomial p ∈ Pn(IK) is
the set of all polynomials of Pn(IK), close enough to p, that is to say, the set of
polynomials p̃ =

∑
j∈ eJ ãjz

j ∈ Pn(IK) with support J̃ ⊂ J and ‖p̃− p‖ ≤ ε.
Given a norm ‖·‖ on IKN with IK = IR or C, we define its dual norm (denoted

by ‖ · ‖∗) by

‖x‖∗ := sup
y 6=0

|yT x|
‖y‖

= sup
‖y‖=1

|yT x|.
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Table 1 represents the most common norms on IKN and their respective dual
norms. Given a vector x ∈ IKN , there exists a vector y ∈ IKN with ‖y‖ = 1

Norms Dual norms

‖x‖1 :=
P

j |xj | ‖x‖∗1 = maxj |xj | = ‖x‖∞
‖x‖2 := (

P
j |xj |2)1/2 ‖x‖∗2 = (

P
j |xj |2)1/2 = ‖x‖2

‖x‖∞ := maxj |xj | ‖x‖∗∞ =
P

j |xj | = ‖x‖1

Table 1. Dual norms for most common norms on IKN

satisfying xT y = ‖x‖∗ (see [11, p.107] or [15, p. 278]). The vector y is called the
dual vector of x.

Definition 2. A value z ∈ IKn is a ε-pseudozero of a polynomial p ∈ Pn if it
is a zero of some polynomial p̃ in Nε(p).

Definition 3. The ε-pseudozero set of a polynomial p ∈ Pn (denoted by Zε(p))
is the set of all the ε-pseudozeros,

Zε(p) := {z ∈ IKn : ∃p̃ ∈ Nε(p), p̃(z) = 0}.

Three important issues arise from these definitions.

– For p with real coefficients aj , it must be specified whether Nε(p) is restricted
to real polynomials and not. Indeed, it seems natural for a real polynomial
to be perturbed by real polynomials.

– One may only be interested in real or complex pseudozero set.
– The pseudozero set Zε(p) cannot be computed directly because it is the

union of the zeros of an infinite number of polynomials.

We can extend those definitions to a system of polynomials

P = {p1, . . . , pk}, k ∈ IN.

We will often consider this system as a vectors of polynomials

P (z) =

 p1(z)
...

pk(z)

 .

Given an ε > 0 and a system of polynomials P = {p1, . . . , pk}, k ∈ IN, the
ε-neighborhood Nε(P ) is the set of systems of polynomials P̃ = {p̃1, . . . , p̃k}
close enough to P , that is to say with p̃j ∈ Nε(pj) for j = 1, . . . , k.

Definition 4. A value z ∈ IKn is a ε-pseudozero of a polynomial system P if
it is a zero of a system of polynomials P̃ in Nε(P ).

Definition 5. The ε-pseudozero set of a system of polynomials P (denoted by
Zε(P )) is the set of all the ε-pseudozeros,

Zε(P ) := {z ∈ IKn : ∃P̃ ∈ Nε(P ), P̃ (z) = 0}.
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2 Pseudozero set of complex multivariate polynomials

Theorem 1 below provides a computable counterpart of the pseudozero set.

Theorem 1 (Stetter [24]). The complex ε-pseudozero set of p =
∑

j∈J ajz
j ∈

Pn(C) verifies

Zε(p) =
{

z ∈ Cn : g(z) :=
|p(z)|
‖z‖∗

≤ ε

}
,

where z := (. . . , |z|j , . . . , j ∈ J)T .

For completeness of the paper, we recall the proof.

Proof. If z ∈ Zε(p) then there exists p̃ ∈ Pn such that p̃(z) = 0 and ‖p− p̃‖ ≤ ε.
From the generalized Hölder’s inequality |xT y| ≤ ‖x‖‖y‖∗, we get

|p(z)| = |p(z)− p̃(z)| =
∣∣∣ ∑

j∈J

(pj − p̃j)zj
∣∣∣ ≤ ‖p− p̃‖‖z‖∗.

It follows that |p(z)| ≤ ε‖z‖∗.
Conversely, let u ∈ C be such that |p(u)| ≤ ε‖u‖ where u := (. . . , |u|j , . . . , j ∈
J). The dual vector d of u verifies dT u = ‖u‖∗ and ‖d‖ = 1. Let us introduce
the polynomials r and pu defined by

r(z) =
n∑

k=0

rkzk with rk = dk,

pu(z) = p(z)− p(u)
r(u)

r(z).

This polynomial pu is (with respect to the norm ‖ · ‖) the nearest polynomial of
p with u as a root. It is clear that r(u) = dT u = ‖u‖∗. So we have

‖p− pu‖ =
|p(u)|
|r(u)|

‖r‖ ≤ ε‖d‖.

As ‖d‖ = 1, we get
‖p− pu‖ ≤ ε.

And since pu(u) = 0, u belongs to Zε(p). ut

This theorem can be immediately extended to systems of polynomials.

Corollary 1 (Stetter [22]). The complex ε-pseudozero set of P = {p1, . . . , pk},
k ∈ IN verifies

Zε(P ) =
{

z ∈ Cn :
|pl(z)|
‖zl‖∗

≤ ε for l = 1, . . . , k

}
,

where zl := (. . . , |z|j , . . . , j ∈ Jl)T .
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For the next theorem, we will restrict our attention to situations where P as
well as all the systems in Nε(P ) are 0-dimensional, that is to say if the solutions
of the system are non-empty and finite.

Theorem 2 (Stetter [22]). Under the above assumptions, each system P̃ ∈
Nε(P ) has the same number of zeros (counting multiplicities) in a fixed pseu-
dozero set connected component of Zε(P ).

Proof. This is the proof of [22, Thm. 3.5]. ut

3 Pseudozero set of real multivariate polynomials

3.1 Complex pseudozero set of real multivariate polynomials

A real ε-neighborhood of p is the set of all polynomials of Pn(IR), close enough
to p, that is to say,

NR
ε (p) = {p̃ ∈ Pn(IR) : ‖p− p̃‖ ≤ ε} .

Then the real ε-pseudozero set of p is defined to include all the zeros of the real
ε-neighborhood of p. A definition of this set is

ZR
ε (p) =

{
z ∈ Cn : p̃(z) = 0 for p̃ ∈ NR

ε (p)
}

.

For ε = 0, the pseudozero set ZR
0 (p) is the set of the roots of p we denote Z(p).

Following Theorem 3 provides a computable counterpart of this definition.
It is based on arguments developed by Hinrichsen and Kelb in [12]. We define
for x, y ∈ IRN ,

d(x, IRy) = inf
α∈IR

‖x− αy‖∗,

the distance of a point x ∈ IRN from the linear subspace IRy = {αy, α ∈ IR}.

Theorem 3. The real ε-pseudozero set of p =
∑

j∈J ajz
j ∈ Pn(IR) verifies

ZR
ε (p) = Z(p) ∪

{
z ∈ Cn\Z(p) : h(z) := d(GR(z), IRGI(z)) ≥ 1

ε

}
,

where GR(z) and GI(z) are the real and imaginary parts of

G(z) =
1

p(z)
(. . . , zj , . . . , j ∈ J)T , z ∈ Cn\Z(p).

Proof. Let z ∈ ZR
ε (p). If p(z) = 0 then z ∈ Z(p) else there exists q ∈ NR

ε (p)
such that q(z) = 0. In this case, we have p(z) = p(z)− q(z) = (p− q)T z, where
z = (. . . , zj , . . . , j ∈ J)T . It follows that 1 = (p − q)T G(z). Hence we have
1 = (p− q)T GR(u) + i(p− q)T GI(u) and so{

(p− q)T GR(u) = 1,

(p− q)T GI(u) = 0.
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As a consequence, we have ‖p − q‖‖GR(u) − αGI(u)‖∗ ≥ 1, for all α ∈ IR. We
conclude that

d(GR(u), IRGI(u)) ≥ 1
‖p− q‖

≥ 1
ε
.

Conversely, let z ∈ Z(p) ∪
{
z ∈ Cn\Z(p) : d(GR(z), IRGI(z)) ≥ 1

ε

}
. If z belongs

to Z(p) then it belongs to ZR
ε (p). Otherwise z satisfies d(GR(z), IRGI(z)) ≥ 1/ε.

From a duality theorem (see [17, p.119]), there exists a vector u ∈ IRN with
‖u‖ = 1 satisfying

uT GR(z) = d(GR(z), IRGI(z)) and uT GI(z) = 0.

Let us consider the real polynomial

q = p− u

d(GR(z), IRGI(z))
.

We have

q(z) = p(z)− uT z

d(GR(z), IRGI(z))
= p(z)− p(z)uT G(z)

d(GR(z), IRGI(z))
= 0.

Furthermore we have ‖q − p‖ = 1/d(GR(z), IRGI(z)), so that ‖p− q‖ ≤ ε. ut

To compute the real ε-pseudozero set ZR
ε (p), we only have to evaluate the dis-

tance d(GR(z), IRGI(z)). This quantity can be calculated easily for the 2-norm.
Let us now denote the 2-norm ‖ · ‖2 and 〈·, ·〉 the corresponding inner product.
In this case, we have

d(x, IRy) =

{√
‖x‖2

2 −
〈x,y〉2
‖y‖2

2
if y 6= 0,

‖x‖2 if y = 0.

For the ∞-norm, it is shown in [16, Prop. 7.7.2] that

d(x, IRy) =

{
mini=0:n

yi 6=0
‖x− (xi/yi)y‖1 if y 6= 0,

‖x‖1 if y = 0.

For the other p-norm with p 6= 2,∞, there is no easy computable formula to
calculate d(x, IRy).

This theorem can be immediately extended to systems of polynomials.

Corollary 2. The real ε-pseudozero set of P = {p1, . . . , pk}, k ∈ IN verifies

ZR
ε (P ) =

k⋂
l=1

(
Z(pl) ∪

{
z ∈ Cn\Z(pl) : hl(z) := d(Gl

R(z), IRGl
I(z)) ≥ 1

ε

})
,

where Gl
R(z) and Gl

I(z) are the real and imaginary parts of

Gl(z) =
1

pl(z)
(. . . , zj , . . . , j ∈ Jl)T , z ∈ Cn\Z(pl).
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As we have seen before, the real pseudozero set is closely related to the
function d. This function can have a discontinuous behavior. It is the subject of
the following lemma.

Lemma 1 (Hinrichsen and Kelb [12]). The function

d : IRn+1 × IRn+1 → IR+, (x, y) 7→ d(x, IRy)

is continuous at all pairs (x, y) with y 6= 0 or x = 0 and discontinuous at all
pairs (x, 0) ∈ IRn+1 × IRn+1, x 6= 0.

This lemma states that a discontinuity problem arises when vector y vanishes. In
our case, the discontinuity arises when GI(z) = 0 where GI(z) is the imaginary
part of

G(z) =
1

p(z)
(1, z, . . . , zn)T .

It follows that GI vanishes for z ∈ IR, that is along the real axis. This explains
why the contour and meshc functions of MATLAB may fail and give some bad
results along the real axis. Of course, if none of the zeros of the polynomial is
real, the real pseudozero set is correct because we do not evaluate the function
G on the real axis.

3.2 Real pseudozero set of real multivariate polynomials

In the previous subsection, we were interested in the complex zeros of a real
polynomial system. Sometimes, we can be interested only in the real zeros of
a system. That is to say, given a polynomial p ∈ Pn(IR), we are interested in
ZR

ε (p) ∩ IRn. The following result gives a formula to compute this set.

Theorem 4. The intersection between the complex ε-pseudozero set of p =∑
j∈J ajz

j ∈ Pn(C) and IRn verifies

ZR
ε (p) ∩ IRn =

{
z ∈ IRn : g(z) :=

|p(z)|
‖z‖∗

≤ ε

}
,

where z := (. . . , |z|j , . . . , j ∈ J)T .

Proof. The proof is the same as Theorem 1. ut

This theorem can be immediately extended to systems of polynomials.

Corollary 3. The intersection between the complex ε-pseudozero set of P =
{p1, . . . , pk}, k ∈ IN and IRn verifies

ZR
ε (P ) ∩ IRn =

{
z ∈ IRn :

|pl(z)|
‖zl‖∗

≤ ε for l = 1, . . . , k
}

,

where zl := (. . . , |z|j , . . . , j ∈ Jl)T .
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4 Visualization of pseudozero sets

The descriptions of Zε(P ) and ZR
ε (P ) given by Theorem 1 and Theorem 3 (and

by Corollary 1 and Corollary 2) enable us to compute, plot and visualize pseu-
dozero set of multivariate polynomials. The pseudozero set is a subset of Cn

which can only be seen by its projections on low dimensional spaces that is often
C.

We have written a MATLAB program to compute and visualize these pro-
jections (see Appendix ??). This program requires the Symbolic Math Toolbox
(and the Extended Symbolic Math Toolbox) which is the MATLAB gateway to
the kernel of MAPLE.

For a given v ∈ Cn, let Zε(P, j, v) be the projection of Zε(P ) onto the zj-space
around v. Then, it follows that for P = {p1, . . . , pk},

Zε(P, j, v) =
{

z ∈ Cn : zi = vi for i 6= j, and max
l=1,...,k

|pl(z)|
‖zl‖∗

≤ ε

}
,

where zl := (. . . , |z|j , . . . , j ∈ Jl)T . One way for visualizing Zε(P, j, v) is to plot
the values of the projection of

ps(z) := log10

(
max

l=1,...,k

|pl(z)|
‖zl‖∗

)
over a set of grid points around v in zj-space. In the same way, we define for a
given v ∈ Cn, ZR

ε (P, j, v) by the projection of ZR
ε (P ) onto the zj-space around

v. Then, it follows that for P = {p1, . . . , pk},

ZR
ε (P, j, v) =

{
z ∈ Cn : zi = vi for i 6= j, and max

l=1,...,k
d(Gl

R(z), IRGl
I(z))−1 ≤ ε

}
,

where Gl
R(z) and Gl

I(z) are the real and imaginary parts of

Gl(z) =
1

pl(z)
(. . . , zj , . . . , j ∈ Jl)T , z ∈ Cn\Z(p).

One way for visualizing ZR
ε (P, j, v) is still to plot the values of the projection of

psR(z) := log10

(
max

l=1,...,k
d(Gl

R(z), IRGl
I(z))−1

)
over a set of grid points around v in zj-space. We examine the following system
from [14] (see Figure 1) using the 2-norm: two unit balls intersection at (2, 2),

P1 =

{
p1 = (z1 − 1)2 + (z2 − 2)2 − 1,

p2 = (z1 − 3)2 + (z2 − 2)2 − 1.

We can be only interested in the real zeros of a polynomial systems. In this
case, we can only draw IRn ∩ ZR

ε (P ). This is what is done with the following
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Fig. 1. Projections of the complex pseudozero set (on the left) and the real pseudozero
set (on the right) of P1
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example in Figure 2 still with the 2-norm,

P2 =

{
p1 = z2

1 + z2
2 − 1,

p2 = 25z1z2 − 12.

In this Figure, we have computed the function

g(x, y) = max
l=1,2

pl(x, y)
‖zl‖∗

,

where zl := (. . . , |x + iy|j , . . . , j ∈ Jl)T .

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2 −2

−1

0

1

2

0

5

10

15

20

25

30

Fig. 2. Projection of the real pseudozero set of P2

Several issues appear when one wants to draw the real or complex pseudozero
set. First, one has to choose a discretization that separates the roots. It is often
a difficult task. For drawing the real pseudozero set, one needs to deal with
function d that is discontinuous on the real axis.

The cost of our algorithms can be very high because it depends on the num-
ber of nodes of the grid. Nevetheless, we are not interested in providing cheap
algorithms. We just want to provide tools that enable us to make a qualitative
analysis of a polynomial.

5 Conclusion

Approximate polynomials are unavoidable in numerous application fields and in
finite precision environment. Plotting pseudozero set can give qualitative and
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sometimes quantitative interesting informations about the behavior of these ap-
proximate polynomials. We have shown that pseudozero set offers a powerful
tool. They can be easily plotted using popular software as MATLAB. We hope
that pseudozero set will be used as much as pseudospectra.
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