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Abstract. In this paper, we provide new error-free transformations for
the sum and the product of two floating-point numbers. These error-free
transformations are well suited for the CELL processor. We prove that
these transformations are error-free, and we perform numerical experi-
ments on the CELL processor comparing these new error-free transfor-
mations with the classic ones.

1 Introduction

For numerical computing, traditional processors are now in competition with
new processors using new architecture.

Over the last 5 years, the main evolution of traditional processors has been
towards multi-core architecture, but there is no new approach to design the
floating-point unit. The power of the new processor is directly dependent on the
number of cores.

On the other hand, new architectures are currently being used for specific
numerical codes. The most popular are GPU (see http://www.gpgpu.org) and
the CELL processor. These new possibilities are the result of the convergence
between the multimedia system (mainly graphics operations) and numerical com-
putation. These solutions offer huge power for numerical computation. The peak
performance of traditional processors is around 50 Gflops and should be com-
pared with the 200 Gflops of the CELL processors and the 500 Gflops of best
graphic cards. Unfortunately, very often, their high level of performance is ob-
tained with specific implementations of floating-point numbers which do not
respect the IEEE 754 standard [1]. For example, on the CELL processor, the
most powerful unit has only a rounding mode toward zero (truncated mode)
and there are no subnormal numbers and no representation for infinity. In both
architectures, to obtain a high level of performance, it takes a lot of hard works
to find the dependencies of the numerical instructions and to use them carefully
to write instructions that use the instruction pipeline fully. The algorithm study
must take into account this situation: an algorithm which needs two or three
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times more operations can be more efficient if these operations can be easily
pipelined.

More and more scientific applications need more accurate computations,
whether for specific algorithms (accurate summation, accurate dot product) or
for an entire method by using extended precision. One of the main way to achieve
this higher precision is to use Error-Free Transformation (EFT). An EFT is
an algorithm which transforms any arithmetic operation ◦ of two values a and b
into a sum of two values s and e, where s is an approximation of the result and
e is an approximation of the error on the result. Such that a ◦ b = s + e. A lot
of publications have been written on EFT and their applications (see for exam-
ple [2,3,4,5,6]) but most of the transformation algorithms use only the rounding
mode to the nearest except for some papers by Priest [7]. With the new archi-
tectures, it is necessary to study the implementation of EFT on processors that
perform computation with the rounding mode toward zero.

In this paper, the TwoSum-toward-zero proposed by Priest in [7] is stud-
ied from an implementation point of view. Its main limitation is found in the
dependencies of its instructions. Another version is proposed which reduces the
dependencies and allows a more efficient implementation. Concerning multiplica-
tion, we study a well-known algorithm that uses a rounding mode to the nearest
and is based on FMA (Fused Multiply-Add). We prove that this algorithm is
usable with a rounding mode toward zero.

The rest of the article is organised as follows. Section 2 gives a reminder of
properties of floating-point numbers that will be used in the paper and results on
EFT. In Section 3, we present the main characteristics of the CELL processor
and motivates our work. Section 4 details the known EFT algorithms for the
sum and the product with rounding mode toward zero. In Section 5, we pro-
vide a new EFT algorithm in rounding mode toward zero more suitable for the
CELL processor; the proof is given in Section 6. Finally, Section 7 is devoted to
performance measurements which show that our new algorithm is faster on the
CELL processor.

2 Floating-Point Arithmetic and EFTs (Error-Free
Transformations)

Let F denote the set of all floating-point numbers, and x ∈ F be a normalized
floating-point number. It can be written as:

x = s × x0.x1 . . . xp−1
︸ ︷︷ ︸

mantissa

×Be, 0 ≤ xi ≤ B − 1, x0 �= 0, (1)

with s = ±1 the sign, B the base, p the precision, and e the exponent of x. We
can say that x is a p-bit floating point number. The value eps = B1−p is the
relative error of x.

The IEEE 754 standard [1] specifies the base (B = 2), x0 = 1 and two main
representations: the single precision (s = 1, p = 24 bits with the hidden bit, and
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e = 8) and the double precision (s = 1, p = 53 bits with the hidden bit, and
e = 11).

Floating-point numbers are approximations of real numbers. Let r be a real
number. The approximation of r, denoted fl(r), in the floating-point set F is
equal to r if r ∈ F. In the other cases, there are two consecutive floating-point
numbers f−, f+ ∈ F such that: f− < r < f+, and then

fl(r) ∈ {f−, f+}.
.

The value fl(r) is chosen between those two values depending on the current
rounding mode. There are four rounding modes.

1. to the nearest: fl(r) is equal to the nearest floating point value of r.
2. toward +∞: fl(r) = f+.
3. toward −∞: fl(r) = f−.
4. toward zero: if r < 0 then fl(r) = f+ else fl(r) = f−.

The approximation error of r is defined to be err(r) = r − fl(r).
Another binary representation can be used to represent floating-point num-

bers. Let x be a floating-point number with a binary representation. x can be
written as:

x = s × 1.m × 2e,

where s, m, e are respectively the sign, the mantissa coded with p − 1 bits and
the exponent. Another representation of x is

x = s × 1m × 2e−p+1,

where

– 1m is an integer such that 2p−1 ≤ 1m < 2p,
– 2e−p+1 is usually named ulp(x) (unit in the last place).

A bound of the relative error is eps = 21−p. Since,

ulp(x) = 2eeps =
|x|
1.m

eps,

it follows that
eps

2
|x| < ulp(x) ≤ eps|x|.

The following lemmas which can be found in [7] are used in this paper.

Lemma 1. Let a = m × ulp(b) a floating-point number of p-bits, and k an
integer such as |k| ≤ |m|, then k × ulp(b) is representable by a floating-point
number of p-bits.

Lemma 2. Let a and b be two floating-point numbers of p-bits such that 1/2 ≤
a/b ≤ 2, the difference of a by b is representable by a floating-point number of
p-bits i.e. fl(a − b) = a − b.

Lemma 3. Let ◦ be a floating-point operation. The following inequality is always
true,

| err(a ◦ b)| < ulp(fl(a ◦ b)) < eps|a ◦ b|.
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3 The CELL Processor

The CELL processor [8] uses a new architecture optimized for multimedia appli-
cations. It can be used for scientific computation [9] as well. It implements two
different cores. The main core is a PowerPC processor (named PPE) with some
elements removed (for example, the reordering instruction mechanism) to free
place for the 8 SPEs (Synergetic Processor Element) which provide the numerical
computation power of the chip.

The PPE is a standard PowerPC processor. It manages the memory, the IO
and runs the operating system. It is fully IEEE 754 compliant [1]. An SPE,
on the contrary, is a small processor with a SIMD unit. It has only 256 KB of
memory, for instructions and data, named the “local store” (LS) and 128 registers
of 128 bits. All exchanges with the main memory are managed by the MFC
(Memory Flow controller) through DMA access. The SIMD processor is based
on a FMA (Fused Multiply-Add) and uses 128-bit registers. So, it performs 4
multiplications on single precision floating-point numbers in a single instruction.
Another important characteristic is that it is fully pipelined. That means that it
can provide 4 results of 4 FMA operations at each cycle. Its peak performance
with a clock at 3.2 Ghz is around 25.6 Gflops. With the 8 SPE on a processor,
the peak performance of the entire processor is around 200 Gflops. In double
precision, the SIMD processor is not fully pipelined and the peak performance
is only 1.8 Gflops/SPE.

The price we pay for the enhanced performance is the incompatibility with
the IEEE 754 standard. For single precision, we should note that:

– There is no division.
– Only the 12 first bits of 1

x and 1√
x

are exact.
– Inf and NaN are not recognized.
– Overflows saturate the largest representable values.
– There are no denormalized results.

Some SPE instructions will be explained in detail to facilitate the understanding
of the algorithms. The variables correspond to a 128-bit registers which can
contain 16 8-bit integers, or 8 16 bit integers, or 4 32-bit integers or 4 32-bit
floating-point numbers or 2 64-bit floating point numbers. Let u,v and w be a
128-bits registers of integer or floating point variables and let comp be a field of
128 bits.

The instructions comp=spu cmpabsgt(u,v) and comp=spu cmpeq(u,v) com-
pare the values of u and v. All the bits of comp are set to 1 if the corresponding
elements of u and v are respectively greater or equal in absolute value. An ex-
ample is provided in Table 1 on two vectors u, v of 4 elements.
Important instructions are:

– c=spu sel(u, v, comp) selects the bits of u or v in relation to the bits of
comp. Number of cycles: 2 (see table ).

– c=spu add(u, v) adds the four values of u with the four values of v. Number
of cycles: 6
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Table 1. Example of the spu cmpabsgt function result

u 1.0 1.0 −1.0 −1.0
v 0.5 −2.0 −0.5 −2.0

comp 0xFFFFFFFF 0x00000000 0xFFFFFFFF 0x00000000

Table 2. Example of the spu sel function result

u 1.0 1.0 −1.0 −1.0
v 0.5 −2.0 −0.5 −2.0

comp 0xFFFFFFFF 0x00000000 0xFFFFFFFF 0x00000000

v 0.5 1.0 −0.5 −1.0

– c=spu sub(u, v) subtracts the four values of u from the four values of v.
Number of cycles: 6

– c=spu madd(u, v, w) multiplies the four values of u with the four cor-
responding values of v and then adds the four values of w . Number of
cycles: 6

The code optimisation on an SPE is very tricky. The SIMD programming is
based on the Altivec system. The interested reader can visit the following web-
site http://www.freescale.com/altivec. Just a specific note: with the com-
piler used by the CELL SDK (Software Development Kit), it is possible to have
a good estimation of instruction orders that will be run on the processor. This
estimation takes into account notably the number of cycles used by the instruc-
tions and the capabilities of the two pipelines. The estimation is given by the
SPU TIMING option of the compiler which indicates for each instruction the start
cycle modulo 10 and the instruction cycle number. In this paper, the result of
this option is slightly improved for a better understanding. Figure 1 shows how
the instructions are run. On this program, the instruction inst1 is run first and
its duration is 6 cycles. The instruction inst2 starts at the cycle 2. Its duration is
6 cycles. The instructions inst3 and 4 start at cycle 8 on two separate pipelines.
The sign - shows that no instruction can be run during these cycles due to vari-
able dependencies between inst2 and inst3. The cycle lost is also known as a
pipeline bubble.

inst1 123456

inst2 234567

inst3 ------890123

inst4 ------89

Fig. 1. The left column shows the instructions and the right column the cycle number
of each instruction and its start cycles

http://www.freescale.com/altivec
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4 The “Error-Free Transformations” (EFT)

An EFT is an algorithm which transforms an arithmetic operation
◦ ∈ {+,−,×, /} on two values a and b into a sum of two floating-point values r
and e such that a◦ b = r + s. We also require that r ≈ fl(a◦ b) and e ≈ err(a◦ b).
EFT are very useful to implement extended precision number [10,2] and accurate
operators [4,3,5,6].

Let a and b be two floating-point numbers and ◦ any operation in (+,−,×, /)
then we have

a + b = fl(a + b) + err(a + b),

where fl(a ◦ b) is a floating-point corresponding to the result and err(a ◦ b) is the
rounding error.

It is known that the error obtained during the operation a ◦ b in the rounding
mode to the nearest is a floating-point number for ◦ ∈ (+,−,×). In that case,
the result of an EFT must be r = fl(a + b) and e = err(a + b).

But it turns out that with other rounding modes, in most cases the error is
a floating-point number but there are exceptions. For example, as noticed by
Priest, with rounding toward zero, if we subtract a very small positive number
from a very large positive number then the rounding error is not a floating-point
number.

4.1 The Sum Operation

A set of algorithms has been proposed for the sum of two numbers in the rounding
mode toward the nearest and used in a lot of libraries. We can cite TwoSum
algorithm of Knuth [11] and FastTwoSum algorithm of Dekker [10],

For rounding mode toward zero, Priest proposed in [7] the following algorithm
to compute the sum of two floating-point number:

1 TwoSum−toward−zero (a , b )
2 i f ( | a | < | b | )
3 swap (a , b )
4 s = f l ( a + b)
5 d = f l ( s − a )
6 e = f l (b − d)
7 i f ( e + d != b)
8 s = a , e = b
9 return ( s , e )

If [s, e] = TwoSum-toward-zero(a, b) then a + b = s + e with either s = e = 0
or |e| < ulp(c).

Figure 2 shows the implementation on the CELL processor of the
TwoSum-toward-zero algorithm and how the code is run. The instruction run-
ning sequence has been given by the SPU TIMING tool.
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1 TwoSum-toward-zero(a,b)
2 comp = spu cmpabsgt(b,a)
3 a = spu sel(a, b, comp)
4 b = spu sel(b, a, comp)
5 s = spu add(a , b)
6 d = spu sub(s , a)
7 e = spu sub(b , d)
8 tmp = spu add(e , d)
9 comp = spu cmpeq(d, tmp)
10 s = spu sel(s, a, comp)
11 e = spu sel(e, b, comp)
12 return s,e)

cycles
12

-34

45

012345

-678901

----234567

-----890123

45

-67

89

Fig. 2. Implementation on the CELL processor of the TwoSum-toward-zero algorithm
and its instruction running sequence. Cycle cost: 29.

This implementation is not efficient. It is obvious that there are important
dependencies between the line 9 and lines 6, 7 and 8. The effect is clearly visible
in the information generated by the SPU TIMING tools. There are a lot of
pipeline “bubbles” marked by the ‘-’ character.

4.2 The Product Operation

For the product, there is an algorithm called TwoProduct in rounding mode to
the nearest proposed by Veltkamp [10] using Dekker Split algorithm [10]. The
Veltkamp algorithm is not efficient since it costs 17 floating point operations.

The TwoProduct algorithm can be re-written in a very simple way if a Fused-
Multiply-and-Add (FMA) operator is available on the targeted architecture [12].
Some computers have a Fused-Multiply-and-Add (FMA) operation that enables a
floating point multiplication followed by an addition to be performed as a single
floating point operation. As a consequence, there is only one rounding error. The
Intel IA-64 architecture, implemented in the Intel Itanium processor, has an FMA
instruction as well as the IBM RS/6000 and the PowerPC before it and as the
new Cell processor [13].

Thanks to the FMA, the TwoProduct algorithm can be re-written as follows,
which costs only 2 operations.

1 TwoProductFMA (a , b )
2 p = f l ( a ∗ b)
3 e = FMA(a , b,−p)
4 return (p , e )

The TwoProductFMA function is very efficient with only 2 operations in a
rounding mode to the nearest. From a pipeline point of view, the TwoProductFMA
is not as efficient as it looks because the two operations cannot be pipelined.
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In spite of this bad characteristic, on most processors this algorithm is much
more efficient than the Veltkamp’s algorithm.

5 A New Algorithm for the Sum

With rounding mode toward zero, Priest’s TwoSum-toward-zero algorithm uses
a comparison between e+d and b. This comparison should wait for the end of all
the previous instructions to be executed. We propose replacing this comparison
by another one which uses only the variables b and d.

1 TwoSum−toward−zero2 ( a , b )
2 i f ( | a | < | b | )
3 swap (a , b )
4 s = f l ( a + b)
5 d = f l ( s − a )
6 e = f l (b − d)
7 i f ( | 2 ∗ b | < | d | )
8 s = a , e = b
9 return ( s , e )

There is not a lot of difference between our algorithm and those proposed by
Priest except that the instruction of line 7 relaxes the dependencies which allows
an increasing in performance. Figure 3 shows how the instructions are run on
the CELL. The cycle number is equal to 20 and should be compared with the
29 of the Priest algorithm.

The proof of this algorithm correctness is presented in the next section.

1 TwoSum-toward-zero2(a,b)
2 comp = spu cmpabsgt(b,a)
3 a = spu sel(a, b, comp)
4 b = spu sel(b, a, comp)
5 s = spu add(a , b)
6 d = spu sub(s , a)
7 e = spu sub(b , d)
8 tmp = spu mul(2 , b)
9 comp = spu cmpabsgt(d, tmp)
10 s = spu sel(s, a, comp)
11 e = spu sel(e, b, comp)
12 return s,e)

cycles
12

-34

45

012345

-678901

----234567

789012

34

-56

--89

Fig. 3. Implementation on the CELL processor of the TwoSum-toward-zero2 algorithm
and its instructions running sequence. Cycle cost: 20.
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6 Proof

This section explains the proof in the rounding mode toward zero of the
TwoSum-toward-zero2and the TwoProductFMAalgorithms. The lines in the proof
refer to the algorithm and not to its implementation on the CELL processor.

6.1 The Correctness Proof for the TwoSum-Toward-Zero2 Algorithm

Let a and b be two floating-point numbers. After the two instructions of line 2
and 3 of algorithm TwoSum-toward-zero2, we have |a| ≥ |b|. The proof will take
into account the case a > 0. For the case a < 0, the proof is very similar.

When a > 0, we will study three cases carefully: b ≥ 0, −a ≤ b ≤ −a/2 and
−a/2 < b < 0.

Case b ≥ 0

It is clear that a + b > 0. In rounding mode toward zero, err(a + b) ≥ 0 and
a + b = fl(a + b) + err(a + b) so we deduce that b ≤ a ≤ fl(a + b) ≤ a + b and
0 ≤ err(a + b) ≤ b.

Let b be equal to h × ulp(b) with h a positive integer. If a > b > 0 then
ulp(a) = n× ulp(b) implies a = k × ulp(b) with k a positive integer. From line 4
of the TwoSum-toward-zero2 algorithm, s = fl(a + b) ≥ b hence s = fl(a + b) =
l × ulp(b), l being a positive integer. As a consequence

err(a + b) = a + b − fl(a + b),
= k × ulp(b) + h × ulp(b) − l × ulp(b),
= (h + k − l) × ulp(b),
= m × ulp(b).

Moreover 0 ≤ err(a + b) ≤ b, hence err(a + b) is representable. This is a conse-
quence of Lemma 1.

From line 5 of the TwoSum-toward-zero algorithm, it holds

d = fl(s − a),
= fl(a + b − err(a + b) − a),
= fl(b − err(a + b)),
= fl((h − m) × ulp(b)).

As we have 0 ≤ err(a + b) ≤ b, it follows that 0 ≤ b − err(a + b) ≤ b and
therefore b−err(a+b) = (h−m)×ulp(b) is representable and b = (h−m)×ulp(b)
is the exact result.

To conclude

e = fl(b − d),
= fl(h × ulp(b) − (h − m) × ulp(b)),
= fl(m × ulp(b)),
= err(a + b),
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so e is the exact result. Moreover

|d| = (h − m) × ulp(b),
< h × ulp(b),
< b,

< |2b|,
As a consequence, the comparison of line 7 of TwoSum-toward-zero2 algo-

rithm is not satisfied. Then the return result is: (s = fl(a + b), e = err(a + b)).

Case −a ≤ b ≤ −a/2

We then have 1/2 ≤ −b/a ≤ 1. As consequence, a + b = a − (−b) is repre-
sentable (by Lemma 2). So s = fl(a + b) = a + b, d = fl(s − a) = b and e =
fl(b−d) = 0. Then d = b so the inequality of line 7 of the TwoSum-toward-zero2
algorithm is not satisfied. The following result is returned: (s = a + b, e = 0).

Case −a/2 < b < 0

Hence a > a + b > a/2 > |b| > 0 and so err(a + b) > 0. We know that
a/2 is a representable floating-point, so we have fl(a + b) ≥ a/2. It follows that
a > s ≥ a/2, 1/2 ≤ s/a < 1. Then s − a is representable and so:

d = fl(s − a),
= s − a,

= a + b − err(a + b) − a,

= b − err(a + b),

and

e = fl(b − d),
= fl(b − (b − err(a + b))),
= fl(err(a + b)).

As a > a + b > |b|, we can deduce a > s = fl(a + b) ≥ |b|, a = h× ulp(b), s =
k × ulp(b), b = −l × ulp(b), h, k, l being positive integers with h > k > l > 0. It
follows that

err(a + b) = a + b − fl(a + b),
= h × ulp(b) − l × ulp(b) − k × ulp(b),
= (h − l − k) × ulp(b).

As b < 0 and err(a + b) ≥ 0 the comparison of line 7 can be rewritten as
follows:

|2b| < |d|,
< |b − err(a + b)|,
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and so

2 ∗ b > b − err(a + b),
|b| < err(a + b).

If the comparison of line 7 is satisfied, the returned result is (s = a, e = b).
As 0 < a + b < a we have

|e| = |b| < err(a + b) < ulp(fl(a + b)) ≤ ulp(a) = ulp(s).

It is in that case that the error is not representable and so s �= fl(a + b).
If the comparison of line 7 is not satisfied, that means that |b| ≥ err(a+b) ≥ 0.

Moreover err(a+b) = (h− l−k)×ulp(b), by Lemma 1 err(a+b) is representable.
Hence e = fl(err(a + b)) = err(a + b). Therefore the returned result by this
algorithm is (s = fl(a + b), e = err(a + b)).

In both cases, the equality s + e = a + b and the inequality e < ulp(s) are
always correct if s �= 0. So, the couple (s, e) is the exact transformation of the
sum of a and b.

6.2 The Correctness Proof for the TwoProductFMA Algorithm

Let a and b be two floating-point numbers of t-bits. They can be written as
a = s1 × 1m1 × 2e1−t, b = s2 × 1m2 × 2e2−t with 2t ≤ 1m1, 1m2 < 2t+1.

The product a × b is equal to (s1 × s2) × (1m1 × 1m2) × 2e1+e2−2t As 2t ≤
1m1, 1m2 < 2t+1, then we have 22t ≤ 1m1 × 1m2 < 22t+2.

The intermediate result of the product a× b is a floating-point of (2t+1)-bits
without taking into account the first bit. In the rounding mode toward zero,
the computed result of a × b is represented exactly by the t + 1 first bits of the
intermediate result. Then the subtraction of fl(a×b) by a×b is exactly the (t+1)
last bits of the intermediate result. That means that err(a × b) is representable
by a floating-point of t-bits and that a× b− fl(a× b) = err(a× b). This function
is usable with two rounding modes: to the nearest and toward zero.

7 Performance Measurements

The performances have been measured on the sum of two vectors of 64 floating-
point numbers. To have a accurate estimate, a sum of two 64 elements vector
have been done 107 times on 1 SPE, without memory exchange with the main
memory.

Inside both code it is necessary to copy the data to registers. An empty pro-
gram which contents only the load and store of the registers has been written.
The cost of this part is around 10 cycles. In practice, the performance measure-
ments show clearly that our algorithm is better than those proposed by Priest.
If we remove the number of cycle due to the load and store of the registers, we
find the theoretical performance. The performance of TwoSum-toward-zero and
the TwoSum-toward-zero2 algorithm are given in Table 3.
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Table 3. Performance of the TwoSum-toward-zero and the TwoSum-toward-zero2 al-
gorithms on a CELL processor

Algorithm computation time performance cycle/operation
in second (MFLOPS)

TwoSum-toward-zero 7.93 80.7 39.65
TwoSum-toward-zero2 6.13 104.4 30.65

Only load-store registers 2.15 - 10.75

8 Conclusion

In this paper, we have proposed an improvement of TwoSum-toward-zero algo-
rithm which reduces the variable dependencies. It allows a better implementation
on processors which use pipeline instructions.

Future work: the next step consists in using this algorithm to implement
algorithms which use EFT on processors which compute only in rounding mode
toward zero.
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