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H 1 Introduction

Computing with floating-point numbers im-
plies some rounding errors. As a consequence,
1 it is important to get some bounds on round-
_] 4] ing errors to ensure the numerical quality of

{8 the computed result. But the computation of
bounds is also performed in finite precision.
One difference is that the computation of bounds
often deals with nonnegative numbers. In this
article, we will prove that we can accurately

point numbers.

free transformations

Throughout the paper, we assume to work
with a floating point arithmetic adhering to
IEEE 754 floating point standard [3]. We as-
sume that no overflow nor underflow occur. The
set of floating point numbers is denoted by F,
the relative rounding error by eps. For IEER
754 double precision, we have eps = 2-53 and
for single precision eps = 224,

We denote by fi(-) the result of a floating
point computation, where all operations inside
parentheses are done in floating point working
precision. Floating point operations in IEEE
754 satisfy [2]

fi(aod) = (aob)(1+€1) = (a0b)/(1+£,) for
o={+,-,-,/} and |e,| < eps.

This implies that

laob—1fi(aob)| < eps|acb| and
lach—fi(aob)| < eps|fi(aoh)| for o = {+, —, “/}
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We use standard notation for error estimations.
The quantities v, are defined as usual [2] by

neps

T 1= forn e N,

1 - neps
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where we implicitly assume that neﬁs <1,
One can notice that a0 b € R and f(a o
b) € F but in general we do not have go b
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compute the error bound for summation of floatin

2 Floating-point arithmetic and error-

F. It is known that for the basic operations
+,—,-, the approximation error of a floating
point operation is still a floating point number

(see for example [1]): 1

z=f(atbh) = atb=z+y with y € F,

z=f{a-b) = a-b=z+y with y € F.

&)

These are error-free transformations of the pair
{a,b) into the pair (z,7).

Fortunately, the quantities = and y in (1)
€an be computed exactly in floating point arith-
metic by applying the well known algorithms
for error-free summation and multiplication, namely
Knuth’s TwoSum from [4, Thm B. p. 236] and
Dekker’s TwoProduct from [1].

The following theorem summarizes the prop-
erties of algorithms TwoSum and TwoProduct.

Theorem 1 (Ogita, Rump and Oishi [5]). Let ' 1

a,b € F and let z,y € F such that [z,y] =
TwoSum(a,b). Then,

atb=zx4y, z =1fl(a+b), IUfSepslmh

[yl < epsla +b|.
The algorithm TwoSum requires 6 flops.

Let a,b € F and let z,y € F such that [z,y] =
TwoProduct(a,b). Then,

z=fi(a-b), |yl < eps|a|,

ly| < epsfa- b

a-b=z+y,

N 'n b = ot

The algorithm TwoProduct requires 17 flops.

Sometimes, it is needed to get even more
accuracy. Floating point predecessor and suc-
cessor of & real number r satisfying min{f: fe
R} <7 < max{f: f € F} are defined by

HY o= ks

pred(r) ;== max{f €F: f <r} and
succ(r) ;== min{f € F: r < f}.
Definition 2. A floating point number feF

is called a faithful rounding of a real number
reR if

© o~

pred(f) < r < suce(f).




nely

AR AT

We denote this by f € O(r). Forr € F, this Proof In [5], it is proved that s =
implies that f =r. Tn+ Y ieoGi- As a consequence, § = mn + 0+
(>°rog — on). From Lemma 3, if we prove
that 2| 37, ¢ — on| < eps|res|, then res is a
faithful rounding of s. It is also proved in [5]
that | "7, ¢; — 0| < 72_1s. Using (2), it fol-
lows that |res — s| < epss + 72_;s which can
be rewritten as (1 —eps —y2_;) < res. A suf-
ficient condition to obtain a faithful rounding
. ® % 4Gt {8, T 0] is then 242_, < eps{l —eps —¥2_,) which is
emma 3 (Rump, Ogita and Oishi [6, lem. 2.4]). __ . i%—eps 1/2
Letr,8 € R and 7 := fi(r). Suppose that 2|6| < et:‘;ulvalent o =l < (1/v2) Feps ° /2 A
eps|F]. Then 7 € O(r + 6), that means 7 is a direct calculation shows that

Faithful rounding means that the computed
result is equal to the exact result if the latter
is a floating point number and otherwise is one
of the two adjacent floating point numbers of
the exact result.

The following lemma makes it possible to
test if a computed result is a faithful rounding.

faithful rounding of r + 4. o el VT—eps epsfl/‘?
3 Summation V2/T+ eps + /T — eps
Hereafter, a compensated scheme to evalu- O

ate the sum of floating-point numbers is pre- ‘We can sum up this by saying that if n <
sented, i.e. the error of individual summation «eps~/2 with a ~ 0.4 then the result of CompSum
is somehow corrected. is a faithfully rounding result when applied to
Indeed, with TwoSum algorithm, one can com- nonnegative numbers. In double precision where
pute the rounding error. This algorithm can be eps = 2733, it is sufficient to have n < 3.107.

cascaded and sum up the errors to the ordinary
computed summation.

Algorithm 1. Compensated summation algo-
rithm [5]

function res = CompSum(p)
m=p;01=0
fori=2:n
[, gi] = TwoSum(m;—1,p;)
oi =A(0i-1 + &)
res = fi(m, + on) [1]
The following proposition gives a bound on

the accuracy of the result. When using -y,
neps < 1 is implicitly assumed. 2]
Proposition 4 (Ogita, Rump and Oishi [5]).

Suppose Algorithm CompSum is applied to floating-

point number p; €F, 1 <i<n. Lets:=)_p;, ]
= gz lp;] and neps < 1. Then, one has

lres — s <epsls| + 7215, (2)
(4

4 Summation with nonnegative terms

Theorem 5. Suppose CompSum algorithm is ap-
plied to nonnegative floating-point number p; €
F, 1<i<n and that (5]

<1+ L—0EF eps™ /2. 6
V2/T ¥ eps + /1 — eps (6]

n

Then the result res is a faithful rounding of
s:=,p; >0.
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The classic error bound for summation is

180 "p) = Y il < a1 Y Ipil-
i=1 =1

i=1

So computing accurately the error bound means
computing > =, |pi| accurately which can be
done with CompSun algorithm.
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