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Accurate simple zeros of polynomials in floating point arithmetic
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Abstract

In the paper, we examine the local behavior of Newton’s method in floating point arithmetic for the computation of a simple
zero of a polynomial assuming that an good initial approximation is available. We allow an extended precision (twice the working
precision) in the computation of the residual. We prove that, for a sufficient number of iterations, the zero is as accurate as if
computed in twice the working precision. We provide numerical experiments confirming this.
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1. Introduction and notation

The key to computing an accurate solution to a nonlinear equation is the accurate evaluation of the function in use.
In this paper, our purpose is to compute accurate simple zeros of univariate polynomials relying on Newton’s method
and assuming that an good initial approximation is available. To reach this goal, we focus on two important things:

• explaining what we mean by “accurate solution”;
• having an accurate polynomial evaluation algorithm to compute the residual in the Newton’s iteration.

Let us explain now what we mean by “accurate solution”. Let x̂ be the computed solution of a problem (P) whose
exact solution is x . Suppose that the computations have been done with a t-bit floating point arithmetic. We will say
the x̂ is as accurate as if computed with twice the working precision if

|̂x − x |

|x |
≤ eps + Ceps2cond(P), (1)

where C is a moderate constant, eps = 2−t , | · | is a norm on the space of the solution and cond(P) is the condition
number of the problem (P). In the right-hand side of inequality (1), the second term reflects the computation in twice
the working precision and the first one the rounding into the working precision. Relation (1) is what we called the
compensated rule of thumb, the classic rule of thumb being [1, p. 9]

|̂x − x |

|x |
≤ Ceps cond(P).
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Throughout the paper, we assume working with a floating point arithmetic adhering to IEEE 754 floating point
standard [2]. We assume that neither overflow nor underflow occur. The set of floating point numbers is denoted
by F and the relative rounding error by eps. For IEEE 754 double precision we have eps = 2−53 and for IEEE 754
single precision eps = 2−24.

We denote by fl(·) the result of a floating point computation, where all operations inside parentheses are done in
floating point working precision. Floating point operations in IEEE 754 satisfy [1]

fl(a ◦ b) = (a ◦ b)(1 + ε) = for ◦ = {+, −, ·, /} and |ε| ≤ eps.

This implies that

|a ◦ b − fl(a ◦ b)| ≤ eps|a ◦ b| and |a ◦ b − fl(a ◦ b)| ≤ eps|fl(a ◦ b)| for ◦ = {+, −, ·, /}.

We use standard notation for error estimations. The quantities γn are defined as usual [1] by

γn :=
neps

1 − neps
for n ∈ N,

where we implicitly assume that neps ≤ 1.
The rest of the paper is organized as follows. In Section 2, we recall some results on the Horner scheme, error-free

transformations and the Compensated Horner scheme. In Section 3, we present the condition number of a simple
zero. In Section 4, we present Newton’s method for root-finding using the Compensated Horner scheme to compute
the residual. In Section 5, we give some numerical experiments. Finally, we conclude by giving some hints about
future work.

2. Accurate polynomial evaluation

In this section, we first recall the Horner scheme as well as give an error bound. We then recall the classic error-free
transformations. We use these transformations for a Compensated Horner scheme which gives a result as accurate as if
computed by the classic Horner scheme using twice the working precision and then rounded to the working precision.

2.1. Classic Horner scheme

The classic method for evaluating a polynomial

p(x) =

n∑
i=0

ai x i

is the Horner scheme which consists in the following algorithm.

Algorithm 1. Polynomial evaluation with Horner’s scheme

function res = Horner(p, x)

sn = an
for i = n − 1 : −1 : 0

si = si+1 · x + ai
end
res = s0

A forward error bound is (see [1, p. 95]):

|p(x) − Horner(p, x)| ≤ γ2n

n∑
i=0

|ai ||x |
i
= γ2n p̃(|x |), (2)

where p̃(x) =
∑n

i=0 |ai |x i .
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2.2. Error-free transformations (EFT)

One can notice that a ◦ b ∈ R and fl(a ◦ b) ∈ F but in general we do not have a ◦ b ∈ F. It is known that for the
basic operations +, −, ·, the approximation error of a floating point operation is still a floating point number (see for
example [3]):

x = fl(a ± b) ⇒ a ± b = x + y with y ∈ F,

x = fl(a · b) ⇒ a · b = x + y with y ∈ F,
(3)

where no underflow is assumed for multiplication. These are error-free transformations of the pair (a, b) into the pair
(x, y).

Fortunately, the quantities x and y in (3) can be computed exactly in floating point arithmetic by applying the well
known algorithms for error-free summation and multiplication, namely Knuth’s TwoSum from [4, Thm B. p. 236] and
Dekker–Veltkamp’s TwoProduct from [3].

The following theorem summarizes the properties of algorithms TwoSum and TwoProduct.

Theorem 1 (Ogita, Rump and Oishi [5]). Let a, b ∈ F and let x, y ∈ F such that [x, y] = TwoSum(a, b). Then,

a + b = x + y, x = fl(a + b), |y| ≤ eps|x |, |y| ≤ eps|a + b|. (4)

The algorithm TwoSum requires 6 flops.
Let a, b ∈ F and let x, y ∈ F such that [x, y] = TwoProduct(a, b). Then,

a · b = x + y, x = fl(a · b), |y| ≤ eps|x |, |y| ≤ eps|a · b|. (5)

The algorithm TwoProduct requires 17 flops.

We present now an error-free transformation for the polynomial evaluation with Horner scheme.

Algorithm 2 (Graillat, Langlois and Louvet [6]). Error-free transformation for the Horner scheme

function [h, pπ , pσ ] = EFTHorner(p, x)

sn = an
for i = n − 1 : −1 : 0

[pi , πi ] = TwoProduct(si+1, x)

[si , σi ] = TwoSum(pi , ai )

Let πi be the coefficient of degree i in pπ

Let σi be the coefficient of degree i in pσ

end
h = s0

The next theorem proves that Algorithm 2 is an error-free transformation.

Theorem 2 (Graillat, Langlois and Louvet [6]). Let p(x) =
∑n

i=0 ai x i be a polynomial of degree n with floating
point coefficients, and let x be a floating point value. Let [h, pπ , pσ ] = EFTHorner(p, x) (Algorithm 2). Then

(i) the floating point evaluation h = Horner(p, x) and

(ii) two polynomials pπ and pσ of degree n − 1 with floating point coefficients,

satisfies

p(x) = h + (pπ + pσ )(x). (6)

Algorithm 2 requires 23n flops.
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2.3. Compensated Horner scheme

From Theorem 2, the global forward error affecting the floating point evaluation of p at x according to the Horner
scheme is

e(x) = p(x) − Horner(p, x) = (pπ + pσ )(x).

The coefficients of these polynomials are exactly computed by Algorithm 2, together with Horner(p, x). Indeed, if
[h, pπ , pσ ] = EFTHorner(p, x), then pπ and pσ are two exactly representable polynomials. The key to increase the
accuracy of the computed result is to compute an approximate of the global error e(x) in working precision, and then
to compute a corrected result

res = fl(Horner(p, x) + e(x)).

We say that c = fl(e(x)) is a corrective term for Horner(p, x). The corrected result res is expected to be more
accurate than the first result Horner(p, x).

Our aim is now to compute the corrective term c = fl((pπ + pσ )(x)). For that we evaluate the polynomial whose
coefficients are those of pπ + pσ rounded to the nearest floating point value. This process is described by Algorithm 3.

Algorithm 3. Evaluation of the sum of two polynomials.

function res = HornerSum(p, q, x)

rn = fl(an + bn)

for i = n − 1 : −1 : 0
ri = fl(ri+1 · x + (ai + bi ))

end

We can now describe the Compensated Horner Scheme.

Algorithm 4 (Graillat, Langlois and Louvet [6]). Compensated Horner scheme

function res = CompHorner(p, x)

[h, pπ , pσ ] = EFTHorner(p, x)

c = HornerSum(pπ , pσ , x)

res = fl(h + c)

The following theorem proves that the result of a polynomial evaluation computed with the Compensated Horner
scheme (Algorithm 4) is as accurate as if computed by the classic Horner scheme using twice the working precision
and then rounded to the working precision.

Theorem 3 (Graillat, Langlois and Louvet [6]). Given a polynomial p =
∑n

i=0 ai x i of degree n with floating point
coefficients, and x a floating point value. We consider the result CompHorner(p, x) computed by Algorithm 4. Then,

|CompHorner(p, x) − p(x)| ≤ eps|p(x)| + γ 2
2n p̃(x). (7)

The Algorithm CompHorner requires 26n + 3 flops.

3. Condition number for root finding

Given a problem, we want to know how to measure the difficulty of solving it. This will be done via the notion of
condition number. Roughly speaking, the condition number measures the sensitivity of the solution to perturbation in
the data. Here is the classic definition for the condition number of root finding for simple roots.

Definition 4. Let p(z) =
∑n

i=0 ai zi be a polynomial of degree n and x be a simple zero of p. The condition number
of x is defined by

cond(p, x) = lim
ε→0

sup
{

|∆x |

ε|x |
: |∆ai | ≤ ε|ai |

}
.
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In the previous definition, ∆x represents the variation of the zero x when the polynomial is perturbed by a
polynomial ∆p(z) =

∑n
i=0 ∆ai zi . It means that x + ∆x is a zero of p + ∆p.

The following theorem gives an explicit formula to compute the condition number.

Theorem 5 (Chaitin–Chatelin and Frayssé [7]). Let p be a polynomial of degree n and x be a simple zero of p. The
condition number of x is given by

cond(p, x) =
p̃(|x |)

|x ||p′(x)|
.

4. Accurate Newton’s method

In this section, we specialize the result from [8] (see also [9]) for the Newton’s method in floating point arithmetic
in the case of an univariate polynomial with a simple root. We use the Compensated Horner scheme to accurately
compute the residual. In that case, we show that the computed result (an approximation of the simple root of the
polynomial) is as accurate as if computed with twice the working precision via the classic Newton’s method and then
rounded back to the working precision.

In [8], Tisseur provided a comprehensive analysis of the Newton’s method in floating point arithmetic (see also [1,
chap. 25]) for solving the equation F(x) = 0 where F : Rm

→ Rm is continuously differentiable and J the Jacobian
matrix (∂ Fi/∂x j ) of F is Lipschitz continuous.

Let p be a given polynomial with simple zeros. We apply the Newton’s method with F(x) = p(x) and so
J (x) = p′(x). The classic Newton’s method is Algorithm 5.

Algorithm 5. Classic Newton’s method

x0 = ξ

xi+1 = xi −
p(xi )
p′(xi )

Hereafter, we use the compensated Horner scheme to evaluate the residual p(x) in order to get a result as accurate
as if computed in twice the working precision. We also assume that we already know that the root we are looking for
belongs to [a, b] with a, b ∈ R. We also define β = maxx∈[a,b] |p′(x)|. The accurate Newton’s method is Algorithm 6.

Algorithm 6. Accurate Newton’s method

x0 = ξ

xi+1 = xi −
CompHorner(p,xi )

p′(xi )

In Algorithm 6, we use CompHorner to evaluate the residual p(xi ) but not p′(xi ). Indeed, since x is a simple zero,
x is not a zero of p′. Therefore, the evaluation of p′ near x is not ill-conditioned, and so Horner’s classical scheme is
suitable.

Applying Corollary 2.3 of [8] with F(x) = p(x) and J (x) = p′(x), we obtain the following theorem.

Theorem 6. Assume that there is an x such that p(x) = 0 and p′(x) 6= 0 is not too small. Assume also that

eps · cond(p, x) ≤ 1/8 for all i.

Then, for all x0 such that

β|p′(x)−1
||x0 − x | ≤ 1/8,

Newton’s method in floating point arithmetic generates a sequence of {xi } whose relative error decreases until the
first i for which

|xi+1 − x |

|x |
≈ eps + γ 2

2ncond(p, x). (8)
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Fig. 1. Accuracy of the classic Newton iteration and of the accurate Newton iteration.

The theorem means that if we begin not too far from the simple root, the Newton’s method gives an approximation
of the root as accurate as if computed with twice the working precision.

The use of an accurate polynomial evaluation algorithm is essential. Indeed, if we use the classic Horner scheme,
then, at the end of the iteration, we only have

|xi+1 − x |

|x |
≈ γ2n cond(p, x). (9)

5. Numerical experiments

All our experiments are performed using the IEEE 754 double precision with MATLAB 7. When needed, we use
the Symbolic Math Toolbox to accurately compute the roots of polynomials (in order to compute the relative forward
error).

We test the Newton’s iterations on the expanded form of the polynomial pn(x) = (x − 1)n
− 10−8 for n = 1:40.

The condition number cond(pn, x) where x is the root 1 + 10−8/n varies from 104 to 1022.
Fig. 1 shows the relative accuracy |̂x − x |/|x | where x is the exact root and x̂ is the computed value by the two

Algorithms 5 and 6. We also plot the a priori error estimation (8) and (9).
As we can see in Fig. 1, the accurate Newton’s iteration exhibits the expected behavior, that is to say, the

compensated rule of thumb. As long as the condition number is less that 1015, the accurate Newton’s iteration produces
results with full precision (forward relative error of the order of 10−16). For condition numbers greater than 1015, the
accuracy decreases.

6. Conclusion and future work

In the paper, we have proved that the Newton’s iteration makes it possible to refine a close initial approximation of
a simple root to yield an approximation as accurate as if computed with twice the working precision.

We only dealt with simple roots. If the root has multiplicity m > 1, one can use the modified Newton’s iteration as
follows.

Algorithm 7. Modified Newton’s method

x0 = ξ

xi+1 = xi − m p(xi )
p′(xi )
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A future work will be to see if we can get the same kind of results than for simple roots when we already know the
multiplicity of the root.

Finally, we will study also the modification where Newton’s method is applied to the ratio p(x)/p′(x) to
approximate multiple roots of p(x) having an unknown multiplicity.
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