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Abstract

In this paper, we consider the problem of a nearest polynomial with a given root in the
complex field (the coefficients of the polynomial and the root are complex numbers). We
are interested in the existence and the uniqueness of such polynomials. Then we study the
problem in the real case (the coefficients of the polynomial and the root are real numbers),
and in the real-complex case (the coefficients of the polynomial are real numbers and the root
is a complex number). We derive new formulas for computing such polynomials.
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1 Introduction

The computation of polynomial roots is extensively used in several fields of Scientific Computing
and Engineering. The use of computers implies a round-off of the polynomial coefficients, often due
to finite precision (in general using the IEEE-754 norm). The sensitivity of the roots with respect
to the uncertainty of the polynomial coefficients has been studied with several approaches.

One of these approaches is to consider the uncertainty of the coefficients (due to round-off) as
a continuity problem. This method was first introduced by Ostrowski [10]. The most powerful
tool of this method seems to be the pseudozero set of a polynomial. Roughly speaking, it is the
set of roots of polynomials which are near to a given polynomial. This set was first introduced by
Mosier [9]. One may compare this notion with the well-know notion of pseudospectra. Concerning
pseudospectra, a comparison between the pseudozero set of a polynomial and the pseudospectra of
its companion matrix is studied in Trefethen and Toh [14]. A survey on recent results on pseudozero
set is given in the book [13].

As noticed in [13], the nearest polynomial with a given root is needed to compute pseudozero
set. Besides its relationship to the pseudozero set or to the approximate GCD problem, computing
nearest polynomials with given properties has applications in Control Theory [1, 11], as well as other
areas if Applied Mathematics. The aim of this paper is to give explicit formulas for such polynomial
both with complex polynomials and real polynomials. The case with complex polynomials has
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already been studied by Hitz and Kaltofen [3, 4, 5] and by Stetter [12]. The main contribution of
this note is an explicit formula for the case of real polynomials.

The paper is organized as follows. In Section 2, we state the problem that we will deal with
and provide some notations. In Section 3, we recall Stetter’s results and prove the uniqueness for
particular norms. In Section 4, we give explicit form for such a nearest polynomial. In Section 5,
we study the problem in the real case and give an explicit expression of the nearest polynomial for
the 2-norm.

2 Preliminaries

Let Pn(C) be the linear space of polynomials of degree at most n with complex coefficients. For a
polynomial p ∈ Pn(C) of degree n, we denote by p0, . . . , pn its coefficients, i.e.

p(z) =
n∑

i=0

piz
i.

Given a norm ‖ · ‖ on Cn+1, the norm on Pn(C) is defined as the norm on Cn+1 of the vector
(p0, p1, . . . , pn)T , i.e.

‖p‖ := ‖(p0, p1, . . . , pn)T‖.
We also define its dual norm (denoted ‖ · ‖∗) by

‖y‖∗ = sup
‖x‖=1

|yT x|, y ∈ Cn+1.

This is not the classical definition: we used the transpose rather than the conjugate transpose.
Nevertheless, we still have the Hölder inequality: |yT x| ≤ ‖y‖∗‖x‖. We can even prove that for all
y, there exists z (called a dual vector of y) satisfying zT y = ‖z‖‖y‖∗ = 1.

The problem we deal with in this paper is the following one: given a polynomial p ∈ Pn(C) and
u ∈ C, we are looking for a nearest polynomial pu ∈ Pn(C) to p having the root u. This problem
appears naturally in algorithms for drawing pseudozero set (see [9, 13, 14, 15]).

Let p ∈ Pn(C) be a polynomial of degree n and u ∈ C be a complex number that will be a root
of the polynomial we are looking for. The problem can be formulated as follow:

Find a polynomial pu ∈ Pn(C) satisfying pu(u) = 0 and such that if there exists a
polynomial q ∈ Pn(C) with q(u) = 0 then we have ‖p− pu‖ ≤ ‖p− q‖.

Such a problem was first introduced by Hitz and Kaltofen [3, 4, 5] using the 2-norm with complex
polynomials. Their results were generalized by Stetter [12, 13] for Hölder p-norm (1 ≤ p ≤ ∞) still
using complex polynomials. In this paper, we establish the version of Stetter’s results (in a slightly
different way), and in addition, we study the uniqueness of a nearest polynomial. We also establish
a computable formula for a nearest polynomial in the real-complex case. We give an explicit formula
for such a polynomial in the case of the 2-norm.
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3 The complex case

Let us denote u := (1, u, u2, . . . , un)T . It is well known (see [6, p. 278]) there exists a vector
d := (d0, d1, . . . , dn)T ∈ Cn+1 satisfying dT u = ‖u‖∗ and ‖d‖ = 1. Let us define the polynomials r
and pu by

r(z) =
n∑

k=0

rkz
k with rk = dk,

pu(z) = p(z)− p(u)

r(u)
r(z).

We can prove the following theorem.

Theorem 1. The polynomial pu is a nearest polynomial to p with the root u.

Proof. It is clear that pu(u) = 0. We have to prove that pu is a nearest polynomial to p satisfying
this equality. Let q ∈ Pn(C) verifying q(u) = 0. By applying Hölder inequality, we have

|p(z)− q(z)| =
∣∣∣
∑

(pi − qi)z
i
∣∣∣ ≤ ‖p− q‖‖z‖∗.

Letting z = u in the previous inequality yields

|p(u)| ≤ ‖p− q‖‖u‖∗ and so
|p(u)|
‖u‖∗ ≤ ‖p− q‖. (3.1)

Furthermore, we remark that

‖p− pu‖ =
|p(u)|
|r(u)|‖r‖.

As ‖r‖ = ‖d‖ = 1 and r(u) = dT u = ‖u‖∗, we have

‖p− pu‖ =
|p(u)|
‖u‖∗ .

It follows from (3.1) that
‖p− pu‖ ≤ ‖p− q‖.

In the following proposition, we have uniqueness of a nearest polynomial if the norm is strictly
convex (it is the case for the p-norms ‖·‖p, 1 < p < ∞). It is not true for an arbitrary norm.

Proposition 1. If the norm ‖·‖ is strictly convex then the nearest polynomial is unique.

Proof. Let pu and p′u be two distinct nearest polynomials to p having the root u. Let us denote
d := ‖p− pu‖ = ‖p− p′u‖. We have

‖p− (pu + p′u)/2‖ = ‖(p− pu)/2 + (p− p′u)/2‖
<

1

2
(‖p− pu‖+ ‖p− p′u‖)

< d.

This contradicts the property of pu and p′u to be a nearest polynomial. So, we have pu = p′u.
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Remark 1. The non-uniqueness of a nearest polynomial for the norm ‖·‖1 and ‖·‖∞ proceeds from
the particular form of the unity ball. We have the following counter-examples:

• in the case of 1-norm ‖ · ‖1, if we take p(z) = 1 + z and u = 1 then the two polynomials

p
(1)
1 (z) = 0 and p

(2)
1 (z) = 1

3
(1− z) are both nearest polynomials;

• in the case of the ∞-norm ‖ · ‖∞, if we take p(z) = 1 + z and u = 0 then the two polynomials

p
(1)
0 (z) = z et p

(2)
0 (z) = 1

2
z are both nearest polynomials.

4 Computation of pu

In this section, we are concerned with finding an explicit expression for the polynomial pu. In
the previous section, we have established the general formula for pu, but we have to compute this
polynomial, that is to say, find a dual vector of u. The problem can be formulated as follow:

Find d ∈ Cn+1 satisfying dT u = ‖u‖∗ and ‖d‖ = 1.

This problem has no explicit solution for an arbitrary norm. We are going to compute it for Hölder
p-norm. We will denote u = |u|eiθ for u 6= 0.

4.1 For the ∞-norm

The problem is the following one.

Find d ∈ Cn+1 satisfying

n∑
j=0

dju
j =

n∑
j=0

|u|j and max
j=1,...,n

|dj| = 1.

We remark that if u 6= 0 then dj = e−ijθ is convenient. In this case, pu can be written

pu(z) = p(z)− p(u)∑n
j=0|u|j

n∑
j=0

e−ijθzj.

Otherwise, if u = 0, then d = (1, 0, . . . , 0) is convenient and in this case, pu can be written

pu(z) = p(z)− p(u).

Example 1. Let us take an easy example: p(z) = z + 1 et u = 1/2. In this case u = (1, 1/2) and
r(z) = z+1. By applying the previous work, we obtain pu(z) = 1+z−((1+1/2)/(1+1/2))(1+z) = 0.
Let us justify this result. Indeed, pu is in the form α(z − 1/2), α ∈ C. In this case

‖p− α(z − 1/2)‖∞ = max{|1− α|, |1 + (1/2)α|} =: d.

Three cases arise

• if α > 0 then d = 1 + (1/2)α > 1 ;

• if α < 0 then d = 1− α > 1 ;

• if α = 0 then d = 1.

The minimum is obtain for α = 0.
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4.2 For the p-norm (1 ≤ p < ∞)

The problem can be expressed as follow.

Find d ∈ Cn+1 satisfying

n∑
j=0

dju
j = ‖u‖q and ‖d‖p = 1 with

1

p
+

1

q
= 1.

It is like solving with d = (dj) the following equations:

n∑
j=0

dju
j =

[ n∑
j=0

|uj|q
]1/q

, (4.2)

[ n∑
j=0

|dj|p
]1/p

= 1. (4.3)

If u 6= 0, let us take dj := |uj |q−1e−ijθ

‖u‖q−1
q

. Let us verify that d = (dj) is convenient. It is clear that d

satisfies equation (4.2). Equation (4.3) yields

[ n∑
j=0

|dj|p
]1/p

=
1

‖u‖q−1
q

[ n∑
j=0

|uj|p(q−1)
]1/p

=
1

‖u‖q−1
q

[ n∑
j=0

|uj|q
]1/p

,

=
1

‖u‖q−1
q

[
‖u‖q

q

]1/p

=
‖u‖q/p

q

‖u‖q−1
q

= ‖u‖q/p−q+1
q = ‖u‖0

q = 1.

So the vector d is a solution of our problem. The polynomial pu is

pu(z) = p(z)− p(u)∑n
j=0|uj|q

n∑
j=0

|uj|q−1e−ijθzj.

If now u = 0 then d = (1, 0, . . . , 0) is convenient and the polynomial pu is

pu(z) = p(z)− p(u).

5 The real case

In this section, we show that following a method proposed in [2], we can solve the problem of a
nearest polynomial in the real case.

Let Pn(R) be the linear space of polynomials of degree at most n with real coefficients. Let
p ∈ Pn(R) be given by

p(z) =
n∑

i=0

piz
i.

Representing p by the vector (p0, . . . , pn−1, pn) of its coefficients, we identify the norm ‖·‖ on Pn(R)
to the norm on Rn+1 of the corresponding vector.

Let p ∈ Pn(R) and u ∈ R a real number which will be a root of the polynomial we are looking
for. The problem is the following one:
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Find a polynomial pu ∈ Pn(R) satisfying pu(u) = 0 and such that if there exists a
polynomial q ∈ Pn(R) with q(u) = 0 then we have ‖p− pu‖ ≤ ‖p− q‖.

If we apply the same procedure as in the complex case, we obtain a solution.
A more complicated problem appears when u is a complex number. Let p ∈ Pn(R) be a

polynomial of degree n and u ∈ C be a complex number which will be a root of the polynomial we
are looking for. We deal with the following problem:

Find a polynomial pu ∈ Pn(R) satisfying pu(u) = 0 and such that if there exists a
polynomial q ∈ Pn(R) with q(u) = 0 then we have ‖p− pu‖ ≤ ‖p− q‖.

For solving this problem, we used arguments proposed in [2]. We suppose that p(u) 6= 0,
otherwise we can choose pu = p. Let q ∈ Pn(R) such that q(u) = 0. We have p(u) = p(u) −
q(u) = (p − q)T u where u = (1, u, u2, . . . , un). It follows that 1 = (p − q)T G(u) where G(u) =

1
p(u)

(1, u, . . . , un)T . Let us denote G(u) = GR(u) + iGI(u) where GR(u), GI(u) are the real and

imaginary parts of G(u). It follows that 1 = (p − q)T GR(u) + i(p − q)T GI(u). As a consequence,
we have {

(p− q)T GR(u) = 1,

(p− q)T GI(u) = 0.

So we have ‖p− q‖‖GR(u)− αGI(u)‖∗ ≥ 1, for all α ∈ R. We denote for x, y ∈ Rn+1,

d(x,Ry) = inf
α∈R

‖x− αy‖∗,

the distance of a point x ∈ Rn+1 from the linear subspace Ry = {αy, α ∈ R}. We can conclude that
‖p − q‖ ≥ 1

d(GR(u),RGI(u))
. From a duality theorem (see [8, p.119]), there exists a vector z ∈ Rn+1

with ‖z‖ = 1 satisfying

zT GR(u) = d(GR(u),RGI(u)) and zT GI(u) = 0.

Let us consider the polynomial with coefficients pu = p− z
d(GR(u),RGI(u))

.

Theorem 2. The polynomial pu is a nearest polynomial with real coefficients having root u.

Proof. We have

pu(u) = p(u)− zT u

d(GR(u),RGI(u))
= p(u)− p(u)zT G(u)

d(GR(u),RGI(u))
= 0

and

‖p− pu‖ =

∥∥∥∥
z

d(GR(u),RGI(u))

∥∥∥∥ =
1

d(GR(u),RGI(u))
.

It follows that pu is a nearest real polynomial to p with root u.

The main difficulty for computing pu is the computation of d(GR(u),RGI(u)) and z. These quan-
tities can be calculated easily for the 2-norm. Let us now denote the 2-norm ‖ · ‖2 and 〈·, ·〉 the
corresponding inner product. In this case, we have

d(x,Ry) =

{√
‖x‖2

2 − 〈x,y〉2
‖y‖22

if y 6= 0,

‖x‖2 if y = 0.
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Moreover, a vector z satisfying

〈z, x〉 = d(x,Ry), 〈z, y〉 = 0 and ‖z‖2 = 1

is given by

z =
x− 〈x, y〉 y

‖y‖22∥∥∥x− 〈x, y〉 y
‖y‖22

∥∥∥
2

if y 6= 0,

and
z =

x

‖x‖2

if y = 0.

For the ∞-norm, it is shown in [7, Prop. 7.7.2] that

d(x,Ry) =





min
i=0:n
yi 6=0

‖x− (xi/yi)y‖1 if y 6= 0,

‖x‖1 if y = 0.

We need to find a vector z satisfying

〈z, x〉 = d(x,Ry), 〈z, y〉 = 0 and ‖z‖∞ = 1.

This is a difficult task and there is no easy computable formula for this problem. For the other
p-norm with p 6= 2,∞, there is no easy computable formula to calculate d(x,Ry).

6 Conclusion

In the paper, we give a formula for the problem of a nearest polynomial with a given root for the
three following cases:

• the polynomial has complex coefficients and the root is complex;

• the polynomial has real coefficients and the root is real;

• the polynomial has real coefficients and the root is complex.

Only the first and the second cases yields an explicit expression for the polynomial (for the p-norm).
The third case is more difficult. It yields a computational expression but an explicit expression is
only derived in the case of the 2-norm.
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