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Abstract

In this note, we study the notion of structured pseudospectra. We prove that for Toeplitz, circulant, Hankel and
symmetric structures, the structured pseudospectrum equals the unstructured pseudospectrum. We show that this is
false for Hermitian and skew-Hermitian structures. We generalize the result to pseudospectra of matrix polynomials.
Indeed, we prove that the structured pseudospectrum equals the unstructured pseudospectrum for matrix polyno-
mials with Toeplitz, circulant, Hankel and symmetric structures. We conclude by giving a formula for structured
pseudospectra of real matrix polynomials. The particular type of perturbations used for these pseudospectra arise
in control theory.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction and notation

The �-pseudospectrum of a matrix A has been introduced in [12] as the subset of complex numbers
consisting of all eigenvalues of all complex matrices within a distance � of A. If the matrix A has a certain
structure (for example, Toeplitz), it is natural to allow only perturbed matrices with the same structure.
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In this case, the structured �-pseudospectrum of a structured matrix A is the subset of complex numbers
consisting of all eigenvalues of all complex structured matrices within a distance � of A.

In this paper, we are mainly concerned with the linear structures,

struct ∈ {Toep, circ, Hankel, sym} (1.1)

corresponding to the sets of Toeplitz, circulant, Hankel and symmetric matrices.
Throughout the paper, we denote by Mn(C) the set of complex n × n matrices and by Mstruct

n (C) the
set of structured complex matrices, struct as in (1.1). We endow these spaces with the 2-norm (also called
the spectral norm) denoted by ‖ · ‖.

Let us consider a matrix A ∈ Mn(C). We denote its spectrum by �(A). For a real � > 0, the �-pseudospe-
ctrum of a matrix A ∈ Mn(C) is the set ��(A) defined by

��(A) = {z ∈ C : z ∈ �(X) where X ∈ Mn(C) and ‖X − A‖��}.
Given a matrix A ∈ Mstruct

n (C) with struct as in (1.1), the structured �-pseudospectrum of A is the set
�struct

� (A) defined by

�struct
� (A) = {z ∈ C : z ∈ �(X) where X ∈ Mstruct

n (C) and ‖X − A‖��}.
For A ∈ Mstruct

n (C), it is clear that we always have

�struct
� (A) ⊆ ��(A).

We are interested in the structures for which there is equality.
To our knowledge, structured pseudospectra (also called “spectral value sets”) have been first defined

and studied with perturbations of the form

A�A + �A = A + D�E, � ∈ Ml,q(C),

where D ∈ Mn,l(C), E ∈ Mq,n(C) are fixed matrices defining the structure of the perturbation (see
[5,11,1]). The definition of structured pseudospectra, we use in this note was first introduced by Böttcher et
al. [3] for the Toeplitz structure. They called it “Toeplitz” �-pseudospectrum in [3] and Toeplitz-structured
pseudospectrum in [2]. In [3], they considered banded Toeplitz matrices only and hence restricted them-
selves to defining �

Toep[r,s]
� (A) for A ∈ M

Toep[r,s]
n (C) where Toep[r, s] stands for the Toeplitz matrices

with at most r nonzero superdiagonals and at most s nonzero subdiagonals. They established that ��(A)

may be different from �
Toep[r,s]
� (A). In this note, we show equality for r = s = n. Moreover, we extend

the definition to other structures, such as circulant, Hankel or symmetric structures.
The paper is organized as follows. In Section 2, we recall results on the structured distance to singu-

larity. In Section 3, we prove that for struct ∈ {Toep, circ, Hankel, sym}, the structured pseudospectrum
equals the unstructured pseudospectrum. Then, we study the cases of the Hermitian and skew-Hermitian
structures. We prove that the equality of the structured and unstructured pseudospectrum does not hold
for these structures. In Section 4, we generalize the previous results to pseudospectra of matrix polyno-
mials with struct ∈ {Toep, circ, Hankel, sym}. We also consider structured pseudospectra of real matrix
polynomials.
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2. Results on the structured distance to singularity

In this section, we recall some results on structured distance to singularity. Given a nonsingular matrix
A ∈ Mn(C), we define the distance to singularity by

d(A) = min{‖�A‖ : A + �A singular, �A ∈ Mn(C)}. (2.2)

For a nonsingular matrix A ∈ Mstruct
n (C), we define the structured distance to singularity by

dstruct(A) = min{‖�A‖ : A + �A singular, �A ∈ Mstruct
n (C)}. (2.3)

Rump has proved in [9, Theorem 12.2] that the two distances d(A) and dstruct(A) are equal for struct ∈
{Toep, circ, Hankel}.
Theorem 2.1 (Rump [9, Theorem 12.2]). Let a nonsingular A ∈ Mstruct

n (C) be given for struct ∈
{Toep, circ, Hankel}. Then we have

d(A) = dstruct(A) = ‖A−1‖−1 = �min(A).

Here, �min(A) denotes the smallest singular value of A. The same property occurs for the symmetric
structure. Before stating the result, we will need the following lemma.

Lemma 2.2 (Rump [9, Lemma 10.1]). Let x ∈ Cn be given. Then there exists a complex symmetric
matrix A such that Ax = x and ‖A‖ = 1.

The next result can be found in [10]. For the sake of completeness, we recall the proof.

Theorem 2.3 (Tisseur and Graillat [10]). Let A be a nonsingular matrix in Mstruct
n (C) where struct=sym.

Then

d(A) = dstruct(A) = ‖A−1‖−1 = �min(A).

Proof. Obviously, we have dstruct(A)�d(A) = ‖A−1‖−1 = �min(A), and hence it remains to be shown
that (A + �A)x = 0 for some x �= 0 and �A symmetric with ‖�A‖ = �min(A). Let A = U�UT be the
Takagi’s factorization of A where U is unitary and � is diagonal with positive entries (Horn and Johnson
[7, Corollary 4.4.4]). Let x be the column of U corresponding to the smallest diagonal entry in �. Then
Ax = �min(A)x. By Lemma 2.2 there exists a symmetric matrix C such that Cx = x and ‖C‖ = 1. Let
�A = −�min(A)C. Then �A is symmetric, ‖�A‖ = �min(A) and

(A + �A)x = �min(A)x − �min(A)x = 0

so that A + �A is singular. �

3. Structured pseudospectrum equals unstructured pseudospectrum

The following lemma shows that the �-pseudospectrum is linked to the distance to singularity. This is
a well-known result (see [13]).
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Lemma 3.1. Given � > 0 and A ∈ Mn(C), the �-pseudospectrum satisfies

��(A) = {z ∈ C : d(A − zI)��}.
In this section, we deal with

struct ∈ {Toep, circ, sym} (3.4)

As we have seen before, we have d(A) = dstruct(A) for A ∈ Mstruct
n (C). Hence, it is sufficient to prove

that

�struct
� (A) = {z ∈ C : dstruct(A − zI)��}

in order to conclude that ��(A) = �struct
� (A) for a given matrix A ∈ Mstruct

n (C). This is the aim of the
following lemma.

Lemma 3.2. Given � > 0 and A ∈ Mstruct
n (C) with struct as in (3.4), the structured �-pseudospectrum

satisfies

�struct
� (A) = {z ∈ C : dstruct(A − zI)��}.

The proof is very similar to the one of Lemma 3.1 but we have to pay attention to keep the structure.

Proof. With A also zI and A − zI is in Mstruct
n (C), so

z ∈ �struct
� (A) ⇔ ∃�A ∈ Mstruct

n (C) : det(A − zI + �A) = 0, ‖�A‖��

⇔ dstruct(A − zI)��. �

From Lemmas 3.1 and 3.2 and Theorems 2.1 and 2.3, we deduce the following theorem.

Theorem 3.3. Given � > 0 and A ∈ Mstruct
n (C) with struct ∈ {Toep, circ, sym}, the �-pseudospectrum

and the structured �-pseudospectrum satisfy

�struct
� (A) = ��(A).

Theorem 2.1 is also true for the Hermitian and skew-Hermitian structures. However, the proof of
Lemma 3.2 given above does not work for these two structures (and also not for the Hankel structure)
since the scalar matrices (zI for z ∈ C) do not have these structures.

In fact, we do not have equality between the structured and the unstructured pseudospectrum for the
Hermitian and skew-Hermitian structures. Indeed, Hermitian and skew-Hermitian matrices are normal,
and if A ∈ Mn (C) is normal then �� (A) = {z ∈ C : dist(z, �(A))��} (see [12]). Consequently,
��(A) contains an open subset of C. But if A is Hermitian then obviously �herm

� (A) ⊂ R, while if A
is skew-Hermitian it is easily seen that �skewherm

� (A) ⊂ iR. This shows that for Hermitian and skew-
Hermitian matrices A the pseudospectrum is always strictly larger than the structured pseudospectrum.
It is clear that �herm

� (A) ⊂ ��(A) ∩ R. Let z ∈ ��(A) ∩ R. Since now zI is Hermitian, it follows that
dherm(A − zI) = d(A − zI) so z ∈ �herm

� (A). Consequently, �herm
� (A) = ��(A) ∩ R. With the same

arguments, we conclude that �skewherm
� (A) = ��(A) ∩ iR.
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As observed by the referees, the equality �Hankel
� (A) = ��(A) is nevertheless true for matrices A in

MHankel
n (C). To see this, let z ∈ ��(A). As in the proof of Theorem 2.3, consider the Takagi’s factorization

A−zI=U�UT and take an x �= 0 such that (A−zI)x=�min(A−zI)x. Rump [9] showed that the matrix A
in Lemma 2.2 can actually be chosen as a Hankel matrix. Thus, there is a matrix C ∈ MHankel

n (C) such that
Cx=x and ‖C‖=1. It follows that �A := −�min(A−zI)C is a Hankel matrix and that (A−zI+�A)x=0.
Consequently, z ∈ �Hankel

� (A).

4. Structured pseudospectra of matrix polynomials

This section deals with pseudospectra of matrix polynomials (see [4,8,11]). We prove a result analogous
to Theorem 3.3 for the pseudospectra of matrix polynomials in the first subsection. The second subsection
is concerned with structured pseudospectra of real matrix polynomials taking into account only real
perturbations.

4.1. Structured pseudospectra of complex matrices

The polynomial eigenvalue problem is to find the solutions (x, �) ∈ Cn × C of

P(�)x = 0,

where

P(�) = �mAm + �m−1Am−1 + · · · + A0,

with Ak ∈ Mn(C), k =0 : m. If x �= 0 then � is called an eigenvalue and x the corresponding eigenvector.
The set of eigenvalues of P is denoted �(P ). When Am is nonsingular, P is said to be regular and has mn
eigenvalues. In the sequel, we assume that P is regular. Let us define

�P(�) = �m�Am + �m−1�Am−1 + · · · + �A0,

where �Ak ∈ Mn(C). We define the �-pseudospectrum of P by

��(P ) = {� ∈ C : (P (�) + �P(�))x = 0 for some x �= 0 with ‖�Ak‖��k�, k = 0 : m}.
The nonnegative parameters �1, . . . , �m allow freedom in how perturbations are measured. In the previous
definition, we also assume that all the matrix polynomials P(�) + �P(�) are also regular. The following
lemma is a reformulation of Lemma 2.1 in [11].

Lemma 4.1. We have

��(P ) = {� ∈ C : d(P (�))��p(|�|)},
where p(x) =∑m

k=0�kx
k .

Proof. Let � be in ��(P ). This implies that there exists �P(�) ∈ Mn(C) such that ‖�Ak‖��k�, k =0 : m

and P(�) + �P(�) is singular. It follows from the definition of the distance d that d(P (�))�‖�P(�)‖.
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Since

‖�P(�)‖�
m∑

k=0

|�|k�k� = �p(|�|),

we have d(P (�))��p(|�|).
Conversely, let � ∈ C be such that d(P (�))��p(|�|). This means that there exists X ∈ Mn(C) such

that ‖X‖��p(|�|) and P(�) + X is singular. Let us define �Ak by

�Ak = sign(�k)�kp(|�|)−1X,

where for complex z we define

sign(z) =
{ |z|/z, z �= 0,

0, z = 0.

Then

�P(�) =
m∑

k=0

�k�Ak =
(

m∑
k=0

|�|k�kp(|�|)−1X

)
= X

and ‖�Ak‖��k�, k = 0 : m. Hence � ∈ ��(P ). �

We assume now that the matrices Ak have a certain structure belonging to

struct ∈ {Toep, circ, Hankel, sym}. (4.5)

We also suppose that all the matrices Ak and �Ak , k = 0 : n, belong to Mstruct
n (C) for a given structure

in (4.5). Let

P(�) = �mAm + �m−1Am−1 + · · · + A0,

with Ak ∈ Mstruct
n (C), k = 0 : m and

�P(�) = �m�Am + �m−1�Am−1 + · · · + �A0,

where �Ak ∈ Mstruct
n (C). One notices that P(�) and �P(�) belong to Mstruct

n (C). We define the structured
�-pseudospectrum of P by

�struct
� (P ) = {� ∈ C : (P (�) + �P(�))x = 0 for some x �= 0

with �Ak ∈ Mstruct
n (C), ‖�Ak‖��k�, k = 0 : n}.

The following lemma is the structured version of Lemma 4.1.

Lemma 4.2. For struct as in (4.5) we have

�struct
� (P ) = {� ∈ C : dstruct(P (�))��p(|�|)},

where p(x) =∑n
k=0 �kx

k .
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Proof. The proof is almost identical to the one of Lemma 4.1. The main thing to notice is that the matrix
X and so the matrices �Ak defined in the proof of Lemma 4.1 can be chosen in Mstruct

n (C). �

From Lemmas 4.1 and 4.2 and Theorems 2.1 and 2.3 we deduce the following theorem for struct in
(4.5).

Theorem 4.3. If � > 0 and P(�) = �mAm + �m−1Am−1 + · · · + A0 is a matrix polynomial with Ak ∈
Mstruct

n (C), k = 0 : m and

struct ∈ {Toep, circ, Hankel, sym},
then the �-pseudospectrum and the structured �-pseudospectrum satisfy

�struct
� (P ) = ��(P ).

4.2. Structured pseudospectra of real matrix polynomials

In this subsection, we consider

P(�) = �mAm + �m−1Am−1 + · · · + A0,

with Ak ∈ Mn(R), k = 0 : m and

�P(�) = �m�Am + �m−1�Am−1 + · · · + �A0,

where �Ak ∈ Mn(R). We suppose that P(�) is subject to structured perturbations that can be expressed
as

[�A0, . . . , �Am] = D�[E0, . . . , Em],
with D ∈ Mn,1(R), � ∈ M1,t (R) and Ek ∈ Mt,n(R), k = 0 : m. This type of structure arises naturally in
control theory. For notational convenience, we introduce

E(�) = E[In, �In, . . . , �mIn]T = �mEm + �m−1Em−1 + · · · + E0,

and

G(�) = E(�)P (�)−1D = GR(�) + iGI(�), GR(�), GI (�) ∈ Rt .

We define the structured �-pseudospectrum by

��(P ) = {� ∈ C : (P (�) + D�E(�))x = 0 for some x �= 0, ‖�‖��}.
We assume that the matrix polynomial P as well as all the matrix polynomials P(�)+D�E(�) are regular.
For x, y ∈ Rt , we denote by

d(x, Ry) = inf
�∈R

‖x − �y‖,

the distance of the point x from the linear subspace Ry = {�y, � ∈ R}. The following theorem provides
a computable characterization of the structured pseudospectrum.
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Theorem 4.4. We have

��(P ) = {� ∈ C\�(P ) : d(GR(�), RGI(�))�1/�} ∪ �(P ).

Proof. If there exists x �= 0 such that (P (�) + D�E(�))x = 0 then x = −P(�)−1D�E(�)x so that
�E(�)x = −�E(�)P (�)−1D�E(�)x. Let us write u = �E(�)x ∈ C, u = u1 + iu2, (u1, u2) ∈ R2. It is
clear that u �= 0 since � /∈ �(P ). Using these notations, we obtain

u = −�G(�)u.

This can be rewritten in real terms by

u1 = −�GR(�)u1 + �GI(�)u2,
u2 = −�GR(�)u2 − �GI(�)u1.

These equations are equivalent to

(1 + �GR(�))u1 − �GI(�)u2 = 0,
− �GI(�)u1 − (1 + �GR(�))u2 = 0.

Since (u1, u2) �= (0, 0), the system has a nontrivial solution. It follows that the determinant of the system
vanishes. A simple calculation shows that this determinant equals (1 + �GR(�))2 + (�GI(�))

2. We
conclude that � satisfies the above equations if and only if

�GI(�) = 0 and �GR(�) = −1.

It follows that �(GR(�) − �GI(�)) = −1 for all � ∈ R, so that we have 1��‖GR(�) − �GI(�)‖. Hence
we have

d(GR(�), RGI(�))�1/�.

Conversely, let us assume that d(GR(�), RGI(�))�1/�. By a duality theorem (see [6]) there exists a
vector z ∈ Rt , ‖z‖ = 1 such that

zTGR(�) = d(GR(�), RGI(�)),

zTGI(�) = 0.

Let us define � = −d(GR(�), RGI(�))
−1z and x = P(�)−1D. In this case, we have (P (�) + D�E(�))

x = 0. �

5. Conclusion

In this note, we have shown that the structured pseudospectrum is equal to the pseudospectrum for the
following structures: Toeplitz, circulant, Hankel and symmetric. We have also shown that this result is false
for the Hermitian and skew-Hermitian structures. We have generalized these results to pseudospectra of
matrix polynomials with Toeplitz, circulant, Hankel and symmetric structures. Moreover, we have given
a formula for structured pseudospectra of real matrix polynomials.
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