
Accurate and Fast Evaluation of Elementary Symmetric Functions

Hao Jiang∗, Stef Graillat† and Roberto Barrio‡
∗School of Science, National University of Defense Technology, Changsha, China

Email: jhnudt@yahoo.cn
†PEQUAN, LIP6, Université Pierre et Marie Curie, CNRS, Paris, France

Email: stef.graillat@upmc.fr
‡Dpto. de Matemática Aplicada and IUMA, Universidad de Zaragoza, E-50009 Zaragoza, Spain

Email: rbarrio@unizar.es

Abstract—This paper is concerned with the fast and accurate
evaluation of elementary symmetric functions. We present a
new compensated algorithm by applying error-free transfor-
mations to improve the accuracy of the so-called Summation
Algorithm, which is used, by example, in the MATLAB’s poly
function. We derive a forward roundoff error bound and
running error bound for our new algorithm. The roundoff
error bound implies that the computed result is as accurate
as if computed with twice the working precision and then
rounded to the current working precision. The running error
analysis provides a shaper bound along with the result, with-
out increasing significantly the computational cost. Numerical
experiments illustrate that our algorithm runs much faster
than the algorithm using the classic double-double library
while sharing similar error estimates. Such an algorithm can
be widely applicable for example to compute characteristic
polynomials from eigenvalues. It can also be used into the
Rasch model in psychological measurement.

Keywords-elementary symmetric functions; floating-point
arithmetic; roundoff error; error-free transformation; compen-
sated algorithm; accurate algorithm.

I. INTRODUCTION

The 𝑘th Elementary Symmetric Function (ESF) associated
with a vector of 𝑛 numbers 𝑋 = (𝑥1, . . . , 𝑥𝑛) is defined as

𝑆
(𝑛)
𝑘 (𝑋) =

∑
1≤𝜋1<...<𝜋𝑘≤𝑛

𝑥𝜋1
𝑥𝜋2

. . . 𝑥𝜋𝑘
, 1 ≤ 𝑘 ≤ 𝑛, (1)

which consists of
(
𝑛
𝑘

)
summands. For 𝑘 = 0, 𝑆(𝑛)

0 (𝑋) =
1. Throughout this paper, we assume that the inputs 𝑋 =
(𝑥1, . . . , 𝑥𝑛) are floating-point numbers.

The classic and widely-used method to compute the ele-
mentary symmetric function (1) is the so-called Summation
Algorithm [9], which is essentially the algorithm used by
MATLAB’s poly function. The error analysis of this algo-
rithm has been considered in [26], and the result implies the
algorithm is stable. However, as mentioned in [26] “due to
cancellation from subtraction”, for some too ill-conditioned
problems, the computed result by the Summation Algorithm
in floating-point arithmetic may be still little accurate. Then
a higher accurate algorithm is required.

In this paper, motivated by the papers [11], [12], [19],
[25], [27], [28], [29], we propose a fast and accurate com-
pensated algorithm, by introducing error-free transformation

(EFT) to the traditional Summation Algorithm. We focus
mainly on the case 2 ≤ 𝑘 ≤ 𝑛− 1. For 𝑘 = 1, the problem
simplifies to computing a sum of floating-point numbers,
and for 𝑘 = 𝑛, to computing a floating-point product. The
corresponding compensated algorithms for these two cases
can be found in [25] and [11], respectively.

As an application, the ESFs appear when expanding a
linear factorization of a polynomial

𝑛∏
𝑖=1

(𝑥− 𝑥𝑖) =
𝑛∑

𝑖=0

𝑐𝑖𝑥
𝑖 =

𝑛∑
𝑖=0

(−1)𝑛−𝑖𝑆
(𝑛)
𝑛−𝑖(𝑋)𝑥𝑖. (2)

With the Summation Algorithm, one can evaluate polyno-
mial’s coefficients {𝑐𝑖}𝑛𝑖=0 from its zeros {𝑥𝑖}𝑛𝑖=1, specially
compute characteristic polynomials from eigenvalues (see
[5], [8] and [26]). Our algorithm can be used to enhance the
accuracy for some ill-conditioned polynomials’ coefficients
evaluation.

The computation of ESFs is also an important part of
conditional maximum likelihood estimation (CMLE) of item
parameters under the Rasch model in psychological mea-
surement [3]. It is promising that our algorithm, improving
the numerical accuracy, can allow much more items to be
calibrated.

The rest of the paper is organized as follows. In Section
2, we introduce some basic notations and results about
floating-point arithmetic, error-free transformations and the
condition number of the problem. After that we recall the
summation algorithm, denoted by SumESF. In Section 3, we
propose a new compensated summation algorithm, denoted
by CompSumESF, together with an error bound. To obtain a
sharper error bound, the corresponding running error analy-
sis is performed. We also present an accurate algorithm using
the double-double library, denoted by DDSumESF, which
is used to compare with our compensated algorithm. In
Section 4, numerical experiments illustrate the accuracy and
efficiency of our compensated algorithm. Finally, concluding
remarks and future work are left for Section 5.

This paper is a full version of the poster [16] that only
presented the compensated algorithm and its properties. Here
we perform the detailed error analysis and numerical tests.

2013 IEEE 21st Symposium on Computer Arithmetic

1063-6889/13 $26.00 © 2013 IEEE

DOI 10.1109/ARITH.2013.18

183

II. NOTATIONS AND PRELIMINARIES

A. Floating-Point Arithmetic

In this paper we assume all the floating-point computa-
tions are performed in double precision (binary64 in IEEE-
754 2008 standard), with “rounding to the nearest” mode
and no underflow nor overflow occurring.

We also assume that the computations in floating-point
arithmetic follow the model

𝑎 op 𝑏 = 𝑓𝑙(𝑎∘ 𝑏) = (𝑎∘ 𝑏)(1+𝜀1) = (𝑎∘ 𝑏)/(1+𝜀2), (3)

where op ∈ {⊕,⊖,⊗}, ∘∈{+,−,×} and ∣𝜀1∣, ∣𝜀2∣ ≤ 𝑢
and 𝑓𝑙(⋅) denotes the result of a floating-point computation,
where all operations inside parentheses are done in floating-
point arithmetic. The symbol 𝑢 is the round-off unit, for
IEEE 754 double precision, 𝑢 = 2−53, and ‘𝑓𝑙’ represents
the floating-point computation, e.g. 𝑎 ⊕ 𝑏 = 𝑓𝑙(𝑎 + 𝑏).
We denote the computed result of 𝑎∈ℝ in floating-point
arithmetic by �̂� or fl(𝑎) and the set of all floating-point
numbers by 𝔽. Following [15], we also use the following
classic properties in error analysis (we always assume that
𝑛𝑢 < 1).

1) if ∣𝛿𝑖∣ ≤ 𝑢, 𝜌𝑖 = ±1, then
∏𝑛

𝑖=1(1 + 𝛿𝑖)
𝜌𝑖 = 1 + 𝜃𝑛,

2) 1 + 𝜃𝑛 = <𝑛> and ∣𝜃𝑛∣ ≤ 𝛾𝑛 := 𝑛𝑢/(1− 𝑛𝑢),
3) (1+𝜃𝑘)(1+𝜃𝑗) = (1+𝜃𝑘+𝑗), <𝑘><𝑗> = <𝑘+ 𝑗>,
4) 𝛾𝑘 + 𝛾𝑗 + 𝛾𝑘𝛾𝑗 ≤ 𝛾𝑘+𝑗 and 𝛾𝑘 < 𝛾𝑘+1.

To derive the running error bound, we need the next relations
obtained from [12] and [20].

𝛾𝑘 ≤ (1 + 𝑢)𝛾𝑘, (1 + 𝑢)
𝑛∣𝑥∣ ≤ 𝑓𝑙(∣𝑥∣

1− (𝑛+ 1)𝑢

)
. (4)

B. Error Free Transformations

For a pair of floating-point numbers 𝑎, 𝑏 ∈ 𝔽, when no
underflow nor overflow occur, there exists a floating-point
number 𝑦 satisfying 𝑎 ∘ 𝑏 = 𝑥 + 𝑦, where 𝑥 = fl(𝑎 ∘ 𝑏)
and ∘∈{+,−,×}. The transformation (𝑎, 𝑏) −→ (𝑥, 𝑦)
is regarded as an error-free transformation. The error-free
transformation algorithms of the addition and product of two
floating-point numbers used later in this paper are mainly
TwoSum and TwoProd algorithms, respectively. If the rel-
ative sizes of the operands of the addition are known a priori,
and the comparison can be avoided, then FastTwoSum may
be faster than TwoSum. On some computers where Fused-
Multiply-and-Add (FMA) operator is available, TwoProd
can be implemented more efficiently by being rewritten
as TwoProductFMA. We can see the details of the four
algorithms above in the references presented in Table I.
Here, algorithm Split, which can split a floating point
number into two parts, is used in TwoProd.

The following theorem summarizes the properties of al-
gorithm TwoSum and TwoProd.

Theorem 1: (Ogita et al.[25]) For 𝑎, 𝑏, 𝑥, 𝑦 ∈ 𝔽, [𝑥, 𝑦] =
TwoSum(𝑎, 𝑏) verifies

𝑥+ 𝑦 = 𝑎+ 𝑏, 𝑥 = fl(𝑎+ 𝑏), 𝑦 ≤ 𝑢∣𝑥∣, 𝑦 ≤ 𝑢∣𝑎+ 𝑏∣;

Table I
ERROR-FREE TRANSFORMATIONS OF ADDITION AND PRODUCT

Algorithm Flops Ref.

[𝑥, 𝑦] = TwoSum(𝑎, 𝑏) 6 [18]
[𝑥, 𝑦] = Split(𝑎) 4 [7]
[𝑥, 𝑦] = TwoProd(𝑎, 𝑏) 17 [7]
[𝑥, 𝑦] = FastTwoSum(𝑎, 𝑏) 3 [7]
[𝑥, 𝑦] = TwoProductFMA(𝑎, 𝑏) 2 [25]

and for 𝑎, 𝑏, 𝑥, 𝑦 ∈ 𝔽, [𝑥, 𝑦] = TwoProd(𝑎, 𝑏) verifies

𝑥+ 𝑦 = 𝑎× 𝑏, 𝑥 = fl(𝑎× 𝑏), 𝑦 ≤ 𝑢∣𝑥∣, 𝑦 ≤ 𝑢∣𝑎× 𝑏∣.
C. Condition Number

Condition numbers measure the sensitivity of the solution
of a problem to perturbation in the data. To perform error
analysis, we define this condition number of the kth ESF
evaluation (1) as

cond(𝑆
(𝑛)
𝑘 (𝑋)) = lim

𝜀→0
sup

{ ∣𝑆(𝑛)
𝑘 (𝑋 +△𝑋)− 𝑆(𝑛)

𝑘 (𝑋)∣
𝜀∣𝑆(𝑛)

𝑘 (𝑋)∣
: ∣△𝑋∣ < 𝜀∣𝑋∣

}
,

where absolute value and comparison are to be understood
componentwise. A direct calculation yields:

cond(𝑆
(𝑛)
𝑘 (𝑋)) =

𝑘𝑆
(𝑛)
𝑘 (∣𝑋∣)

∣𝑆(𝑛)
𝑘 (𝑋)∣

. (5)

In particular, cond(𝑆(𝑛)
𝑛 (𝑋)) = cond(

∏𝑛
𝑖=1 𝑥𝑖) = 𝑛 and

cond(𝑆
(𝑛)
1 (𝑋)) = cond(

∑𝑛
𝑖=1 𝑥𝑖) =

∑𝑛
𝑖=1 ∣𝑥𝑖∣

∣∑𝑛
𝑖=1 𝑥𝑖∣ .

D. Classic Algorithm

The Summation Algorithm, represented by Algorithm 1
below, computes the elementary symmetric functions recur-
sively, which is the same as the one in [26], except that it
only computes the kth ESF rather than all of ESFs.

Algorithm 1: Summation Algorithm
Input: 𝑋 = (𝑥1, . . . , 𝑥𝑛) and 𝑘
Output: k-th ESF 𝑆(𝑛)

𝑘 (𝑋) = 𝑆
(𝑛)
𝑘

function 𝑆(𝑛)
𝑘 =SumESF(𝑋, 𝑘)

𝑆
(𝑖)
0 = 1, 1 ≤ 𝑖 ≤ 𝑛− 1; 𝑆

(𝑖)
𝑗 = 0, 𝑗 > 𝑖; 𝑆

(1)
1 = 𝑥1;

for 𝑖 = 2 : 𝑛
for 𝑗 = max{1, 𝑖+ 𝑘 − 𝑛} : min{𝑖, 𝑘}
𝑆
(𝑖)
𝑗 = 𝑆

(𝑖−1)
𝑗 + 𝑥𝑖𝑆

(𝑖−1)
𝑗−1 ;

end
end

Here, it is obvious that 𝑆(𝑖)
𝑗 is an abbreviation of

𝑆
(𝑖)
𝑗 = 𝑆

(𝑖)
𝑗 (𝑥1, . . . , 𝑥𝑖) =

∑
1≤𝜋1<...<𝜋𝑗≤𝑖

𝑥𝜋1
𝑥𝜋2

. . . 𝑥𝜋𝑗
.

184

If we substitute 𝑗 = 1 : 𝑖 for 𝑗 = max{1, 𝑖 + 𝑘 − 𝑛} :
min{𝑖, 𝑘}, we can compute all ESFs simultaneously. For
the simplification of the error analysis, we only consider
the computation of the kth ESF. However, in practical cal-
culation such as computing characteristic polynomial from
eigenvalue, this substitution is often required.

The following theorem gives roundoff error bounds for
Algorithm 1.

Theorem 2: If 𝑋 = (𝑥1, . . . , 𝑥𝑛) is a vector of floating-
point numbers, the computed 𝑘-th elementary symmetric
function 𝑆(𝑛)

𝑘 = 𝑆
(𝑛)
𝑘 (𝑋) by Algorithm 1 in floating-point

arithmetic verifies∣∣∣∣𝑆(𝑛)
𝑘 − 𝑆(𝑛)

𝑘

𝑆
(𝑛)
𝑘

∣∣∣∣ ≤ 1

𝑘
𝛾2(𝑛−1)cond(𝑆

(𝑛)
𝑘), 2 ≤ 𝑘 ≤ 𝑛− 1,

∣∣∣∣𝑆(𝑛)
1 − 𝑆(𝑛)

1

𝑆
(𝑛)
1

∣∣∣∣ ≤ 𝛾𝑛−1cond(𝑆
(𝑛)
1) = 𝛾𝑛−1

∑𝑛
𝑖=1 ∣𝑥𝑖∣

∣∑𝑛
𝑖=1 𝑥𝑖∣

, 𝑘 = 1,

∣∣∣∣𝑆(𝑛)
𝑛 − 𝑆(𝑛)

𝑛

𝑆
(𝑛)
𝑛

∣∣∣∣ ≤ 1

𝑛
𝛾𝑛−1cond(𝑆

(𝑛)
𝑛) = 𝛾𝑛−1, 𝑘 = 𝑛.

Proof: For the cases of 𝑘 = 1 and 𝑘 = 𝑛, the
results directly come from Lemma 8.4 and Lemma 3.1 of
[15], respectively. For the case of 2 ≤ 𝑘 ≤ 𝑛 − 1, one
method is the induction shown in [26]. However we deem
that the error bound of 𝜃(𝑖1...𝑖𝑘)𝑡 in Theorem 4.3 of [26]
should be 𝛾2(𝑛−1). Hence, we make a small improvement
by substituting 𝛾2(𝑛−1) for 𝛾2𝑛. The other method is using
data dependency graph just like that in [6], [17] and [30].
Then it is easy to obtain the following equation

∣𝑆(𝑖)
𝑗 − 𝑆(𝑖)

𝑗 ∣ ≤ 𝛾2(𝑖−1)𝑆
(𝑖)
𝑗 (∣𝑥1∣, . . . , ∣𝑥𝑖∣), 1 ≤ 𝑗 ≤ 𝑖 ≤ 𝑛.

(6)
Let 𝑗 = 𝑘 and 𝑖 = 𝑛, we will obtain the expected result.
Finally by definition of the condition number (5), we can
obtain the relative error bound of Algorithm 1.

III. ACCURATE ESF EVALUATION

In this section, we present a compensated algorithm to
compute the ESFs based on error-free transformations and
classic Summation Algorithm. The result by our method is
roughly as accurate as the one computed by the classic sum-
mation algorithm using twice the working precision, with a
final rounding to the working precision (see Theorem 3).

A. Compensated Algorithm

We present hereafter a compensated scheme to evaluate
the kth elementary symmetric function.

Algorithm 2: Compensated Summation Algorithm
Input: 𝑋 = (𝑥1, . . . , 𝑥𝑛) and 𝑘

Output: 𝑘-th ESF 𝑆
(𝑛)

𝑘 (𝑋) = 𝑆
(𝑛)

𝑘

function 𝑆
(𝑛)

𝑘 =CompSumESF(𝑋, 𝑘)
𝑆
(𝑖)
0 = 1, 1 ≤ 𝑖 ≤ 𝑛− 1; 𝑆

(𝑖)
𝑗 = 0, 𝑗 > 𝑖; 𝑆

(1)
1 = 𝑥1;

𝜖𝑆
(𝑖)

𝑗 = 0, ∀ 𝑖, 𝑗

for 𝑖 = 2 : 𝑛
for 𝑗 = max{1, 𝑖+ 𝑘 − 𝑛} : min{𝑖, 𝑘}
[𝑝, 𝛽

(𝑖)
𝑗] = TwoProd(𝑥𝑖, 𝑆

(𝑖−1)
𝑗−1);

[𝑆
(𝑖)
𝑗 , 𝜎

(𝑖)
𝑗] = TwoSum(𝑆

(𝑖−1)
𝑗 , 𝑝);

𝜖𝑆
(𝑖)

𝑗 = 𝜖𝑆
(𝑖−1)

𝑗 ⊕ (𝛽
(𝑖)
𝑗 ⊕ 𝜎(𝑖)𝑗)⊕ 𝑥𝑖 ⊗ 𝜖𝑆

(𝑖−1)

𝑗−1

end
end
𝑆
(𝑛)

𝑘 = 𝑆
(𝑛)
𝑘 ⊕ 𝜖𝑆(𝑛)

𝑘

From Algorithm 2 and Theorem 1, it follows that

𝑝+ 𝛽
(𝑖)
𝑗 = 𝑥𝑖 × 𝑆(𝑖−1)

𝑗−1 and 𝑆(𝑖)
𝑗 + 𝜎

(𝑖)
𝑗 = 𝑆

(𝑖−1)
𝑗 + 𝑝, (7)

and then

𝑆
(𝑖)
𝑗 + (𝛽

(𝑖)
𝑗 + 𝜎

(𝑖)
𝑗) = 𝑆

(𝑖−1)
𝑗 + 𝑥𝑖 × 𝑆(𝑖−1)

𝑗−1 . (8)

Let 𝜖𝑆(𝑖)
𝑗 be the error between the theoretical result and the

computed one, so that

𝑆
(𝑖)
𝑗 + 𝜖𝑆

(𝑖)
𝑗 = 𝑆

(𝑖)
𝑗 , ∀ 𝑖, 𝑗. (9)

Since

𝑆
(𝑖)
𝑗 = 𝑆

(𝑖−1)
𝑗 + 𝑥𝑖 × 𝑆(𝑖−1)

𝑗−1 , (10)

and by (8), (9) and (10), we can deduce that

𝜖𝑆
(𝑖)
𝑗 = 𝜖𝑆

(𝑖−1)
𝑗 + (𝛽

(𝑖)
𝑗 + 𝜎

(𝑖)
𝑗) + 𝑥𝑖 × 𝜖𝑆(𝑖−1)

𝑗−1 . (11)

Therefore, computing an approximate 𝜖𝑆
(𝑛)

𝑘 of 𝜖𝑆(𝑛)
𝑘 in the

working precision and correcting the original result 𝑆(𝑛)
𝑘

with it will be expected to improve the global accuracy. The
discussion below exhibits the validation of Algorithm 2.

B. Forward Error Bound

Lemma 1: Let us consider the recurrence (11), with the
notation 𝑤(𝑖)

𝑗 = 𝛽
(𝑖)
𝑗 + 𝜎

(𝑖)
𝑗 and Definition (1). Then, we

have

𝜖𝑆
(𝑛)
𝑘 =

𝑛∑
𝑖=2

𝑚𝑖𝑛{𝑖,𝑘}∑
𝑗=𝑚𝑎𝑥{1,𝑖+𝑘−𝑛}

𝑤
(𝑖)
𝑗 𝑆

(𝑛−𝑖)
𝑘−𝑗 (𝑥𝑖+1, . . . , 𝑥𝑛).

Proof: The proof is direct by induction. We can also
obtain the result by drawing data dependency graph like in
[6], [17] and [30].

Lemma 2: For a vector of 𝑛 floating-point numbers
𝑋 = (𝑥1, . . . , 𝑥𝑛), Algorithm 2 computes the evaluation of

𝜖𝑆
(𝑛)
𝑘 defined in Lemma 1. Then the computed result 𝜖𝑆

(𝑛)

𝑘

satisfies the following forward error bound,

∣𝜖𝑆(𝑛)
𝑘 −𝜖𝑆(𝑛)

𝑘 ∣ ≤ 2𝑢(𝑛−1)(1+𝑢)𝛾2(𝑛−1)(1+𝛾2(𝑛−2))𝑆
(𝑛)
𝑘 (∣𝑋∣),

where 𝑆(𝑛)
𝑘 (∣𝑋∣) = 𝑆

(𝑛)
𝑘 (∣𝑥1∣, . . . , ∣𝑥𝑛∣).

185

Proof: First, we will present the expression of 𝜖𝑆
(𝑖)

𝑗 . By

Algorithm 2, let 𝑤(𝑖)
𝑗 = 𝛽

(𝑖)
𝑗 ⊕ 𝜎(𝑖)𝑗 = 𝑤

(𝑖)
𝑗 (1 + 𝛿), ∣𝛿∣ < 𝑢,

we have

𝜖𝑆
(𝑖)

𝑗 = 𝜖𝑆
(𝑖−1)

𝑗 ⊕ 𝑤(𝑖)
𝑗 ⊕ 𝑥𝑖 ⊗ 𝜖𝑆

(𝑖−1)

𝑗−1

= 𝑤
(𝑖)
𝑗 <2>+ 𝜖𝑆

(𝑖−1)

𝑗 <2>+ 𝑥𝑖 × 𝜖𝑆
(𝑖−1)

𝑗−1 <2>.

And in particular, the initial and boundary values may need
some modifications, such as

𝜖𝑆
(𝑖)

1 = 𝜖𝑆
(𝑖−1)

1 ⊕ 𝑤(𝑖)
1 = 𝜖𝑆

(𝑖−1)

1 <1>+ 𝑤
(𝑖)
1 <1>,

𝜖𝑆
(𝑖)

𝑖 = 𝑤
(𝑖)
𝑖 ⊕ 𝑥𝑖 ⊗ 𝜖𝑆

(𝑖−1)

𝑖−1 = 𝑤
(𝑖)
𝑖 <1>+ 𝑥𝑖 × 𝜖𝑆

(𝑖−1)

𝑖−1 <2>

with 𝑤(𝑖)
1 = 𝜎

(𝑖)
1 and 𝑤(𝑖)

𝑖 = 𝛽
(𝑖)
𝑖 .

Like in the proof of Lemma 1, we have

𝜖𝑆
(𝑛)

𝑘 =

𝑛∑
𝑖=2

𝑚𝑖𝑛{𝑖,𝑘}∑
𝑗=𝑚𝑎𝑥{1,𝑖+𝑘−𝑛}

𝑤
(𝑖)
𝑗 ×

𝑆
(𝑛−𝑖)
𝑘−𝑗 (𝑥𝑖+1, . . . , 𝑥𝑛)(1 + 𝜃(𝑖, 𝑗)),

where ∣𝜃(𝑖, 𝑗)∣ < 𝛾2(𝑛−1), which can be easily proved by
induction and directly obtained with the data dependency
graph. Then we obtain

∣𝜖𝑆(𝑛)
𝑘 − 𝜖𝑆(𝑛)

𝑘 ∣ ≤ 𝛾2(𝑛−1)

𝑛∑
𝑖=2

𝑚𝑖𝑛{𝑖,𝑘}∑
𝑗=𝑚𝑎𝑥{1,𝑖+𝑘−𝑛}

∣𝑤(𝑖)
𝑗 ∣

× 𝑆(𝑛−𝑖)
𝑘−𝑗 (∣𝑥𝑖+1∣, . . . , ∣𝑥𝑛∣).

(12)

Next, we will obtain the bound of ∣𝑤(𝑖)
𝑗 ∣. From Theorem

1, we get

∣𝛽(𝑖)𝑗 ∣ ≤ 𝑢∣𝑥𝑖×𝑆(𝑖−1)
𝑗−1 ∣ and ∣𝜎(𝑖)𝑗 ∣ ≤ 𝑢∣𝑆(𝑖−1)

𝑗 +𝑥𝑖⊗𝑆(𝑖−1)
𝑗−1 ∣,

and then

∣𝑤(𝑖)
𝑗 ∣ ≤ ∣𝛽(𝑖)𝑗 ∣+∣𝜎(𝑖)𝑗 ∣ ≤ 2𝑢(1+𝑢)(∣𝑆(𝑖−1)

𝑗 ∣+∣𝑥𝑖∣×∣𝑆(𝑖−1)
𝑗−1 ∣).

(13)
Taking into account (6), we have

∣𝑆(𝑖−1)
𝑗 ∣ ≤ (1 + 𝛾2(𝑖−2))𝑆

(𝑖−1)
𝑗 (∣𝑥1∣, . . . , ∣𝑥𝑖−1∣),

∣𝑆(𝑖−1)
𝑗−1 ∣ ≤ (1 + 𝛾2(𝑖−2))× 𝑆(𝑖−1)

𝑗−1 (∣𝑥1∣, . . . , ∣𝑥𝑖−1∣).
(14)

Then, considering (13), (14) and

𝑆
(𝑖−1)
𝑗 (∣𝑥1∣, . . . , ∣𝑥𝑖−1∣) + ∣𝑥𝑖∣ × 𝑆(𝑖−1)

𝑗−1 (∣𝑥1∣, . . . , ∣𝑥𝑖−1∣)
= 𝑆

(𝑖)
𝑗 (∣𝑥1∣, . . . , ∣𝑥𝑖∣),

we obtain

∣𝑤(𝑖)
𝑗 ∣ ≤ 2𝑢(1 + 𝑢)(1 + 𝛾2(𝑛−2))𝑆

(𝑖)
𝑗 (∣𝑥1∣, . . . , ∣𝑥𝑖∣). (15)

Since
𝑚𝑖𝑛{𝑖,𝑘}∑

𝑗=𝑚𝑎𝑥{1,𝑖+𝑘−𝑛}
𝑆
(𝑖)
𝑗 (∣𝑥1∣, . . . , ∣𝑥𝑖∣)𝑆(𝑛−𝑖)

𝑘−𝑗 (∣𝑥𝑖+1∣, . . . , ∣𝑥𝑛∣)

= 𝑆
(𝑛)
𝑘 (∣𝑥1∣, . . . , ∣𝑥𝑛∣),

then from (12), (15), we can finally deduce the expected
result.

Theorem 3: For a vector of 𝑛 floating-point numbers
𝑋 = (𝑥1, . . . , 𝑥𝑛), the relative forward error bound in
Algorithm 2 satisfies∣∣∣∣𝑆

(𝑛)

𝑘 − 𝑆(𝑛)
𝑘

𝑆
(𝑛)
𝑘

∣∣∣∣ ≤ 𝑢+ 1

𝑘
𝛾22(𝑛−1)cond(𝑆

(𝑛)
𝑘 (𝑋)),

∣∣∣∣𝑆(𝑛)
1 − 𝑆(𝑛)

1

𝑆
(𝑛)
1

∣∣∣∣ ≤ 𝑢+ 𝛾2𝑛−1cond(𝑆
(𝑛)
1),

∣∣∣∣𝑆(𝑛)
𝑛 − 𝑆(𝑛)

𝑛

𝑆
(𝑛)
𝑛

∣∣∣∣ ≤ 𝑢+ 1

𝑛
𝛾𝑛𝛾2𝑛cond(𝑆

(𝑛)
𝑛),

with 2 ≤ 𝑘 ≤ 𝑛− 1, 𝑘 = 1, 𝑘 = 𝑛, respectively.
Proof: For 2 ≤ 𝑘 ≤ 𝑛− 1, by Algorithm 2, we have

𝑆
(𝑛)

𝑘 = 𝑆
(𝑛)
𝑘 ⊕ 𝜖𝑆(𝑛)

𝑘 = (𝑆
(𝑛)
𝑘 + 𝜖𝑆

(𝑛)

𝑘)(1 + 𝛿)

= (𝑆
(𝑛)
𝑘 + 𝜖𝑆

(𝑛)
𝑘 − 𝜖𝑆(𝑛)

𝑘 + 𝜖𝑆
(𝑛)

𝑘)(1 + 𝛿),

with ∣𝛿∣ < 𝑢. Considering 𝑆(𝑛)
𝑘 + 𝜖𝑆

(𝑛)
𝑘 = 𝑆

(𝑛)
𝑘 , we have

∣𝑆(𝑛)

𝑘 − 𝑆(𝑛)
𝑘 ∣ ≤ 𝑢∣𝑆(𝑛)

𝑘 ∣+ (1 + 𝑢)∣𝜖𝑆(𝑛)
𝑘 − 𝜖𝑆(𝑛)

𝑘 ∣.
Taking into account that (1 + 𝑢)2(1 + 𝛾2(𝑛−2)) = (1 +
𝛾2(𝑛−1)), and 2(𝑛 − 1)𝑢(1 + 𝛾2(𝑛−1)) = 𝛾2(𝑛−1), from
Lemma 2, we obtain

∣𝑆(𝑛)

𝑘 − 𝑆(𝑛)
𝑘 ∣ ≤ 𝑢∣𝑆(𝑛)

𝑘 ∣+ 𝛾22(𝑛−1)𝑆
(𝑛)
𝑘 (∣𝑋∣). (16)

At last the desired bound follows from the definition of
condition number (5). For the cases of 𝑘 = 1 and 𝑘 = 𝑛,
the results come from Proposition 4.5 of [25] and Theorem
2 of [11], respectively.

C. Running Error Analysis

In practical calculations, it is desirable to obtain a cor-
responding error bound at the same time as the computed
value. The a priori error bound (16) of Theorem 3 is entirely
adequate for theoretical purposes, but lakes sharpness. For
this requirement, we perform a running error analysis of the
CompSumESF algorithm, which provides a sharper and a
posteriori error bound. We first provide the compensated
summation algorithm with running error bound, denoted
by CompSumESFwErr, then we prove the efficiency and
rationality of this algorithm with Theorem 4.

Algorithm 3: Compensated Summation Algorithm with
running error bound

Input: 𝑋 = (𝑥1, . . . , 𝑥𝑛) and 𝑘

Output: k-th ESF 𝑆
(𝑛)

𝑘 (𝑋) = 𝑆
(𝑛)

𝑘 and Running Error
Bound 𝜇

function [𝑆
(𝑛)

𝑘 , 𝜇]=CompSumESFwErr(𝑋, 𝑘)
𝑆
(𝑖)
0 = 1, 1 ≤ 𝑖 ≤ 𝑛− 1; 𝑆

(𝑖)
𝑗 = 0, 𝑗 > 𝑖; 𝑆

(1)
1 = 𝑥1;

𝜖𝑆
(𝑖)

𝑗 = 0, 𝐸𝑆
(𝑖)

𝑗 = 0, ∀ 𝑖, 𝑗

186

for 𝑖 = 2 : 𝑛
for 𝑗 = max{1, 𝑖+ 𝑘 − 𝑛} : min{𝑖, 𝑘}
[𝑝, 𝛽

(𝑖)
𝑗] = TwoProd(𝑥𝑖, 𝑆

(𝑖−1)
𝑗−1);

[𝑆
(𝑖)
𝑗 , 𝜎

(𝑖)
𝑗] = TwoSum(𝑆

(𝑖−1)
𝑗 , 𝑝);

𝜖𝑆
(𝑖)

𝑗 = 𝜖𝑆
(𝑖−1)

𝑗 ⊕ (𝛽
(𝑖)
𝑗 ⊕ 𝜎(𝑖)𝑗)⊕ 𝑥𝑖 ⊗ 𝜖𝑆

(𝑖−1)

𝑗−1

𝐸𝑆
(𝑖)

𝑗 = 𝐸𝑆
(𝑖−1)

𝑗 ⊕ ∣𝛽(𝑖)𝑗 ⊕ 𝜎(𝑖)𝑗 ∣ ⊕ ∣𝑥𝑖∣ ⊗ 𝐸𝑆
(𝑖−1)

𝑗−1

end
end
[𝑆

(𝑛)

𝑘 , 𝑐] = FastTwoSum(𝑆
(𝑛)
𝑘 , 𝜖𝑆

(𝑛)

𝑘)

�̂� = (𝛾2(𝑛−1) ⊗ 𝐸𝑆
(𝑛)

𝑘)⊘ (1− 3𝑛𝑢)
𝜇 = (∣𝑐∣ ⊕ �̂�)⊘ (1− 2𝑢)

Lemma 3: For a vector of 𝑛 floating-point numbers 𝑋 =

(𝑥1, . . . , 𝑥𝑛), 𝜖𝑆
(𝑛)
𝑘 is the theoretical result and 𝜖𝑆

(𝑛)

𝑘 is the
corresponding numerical result in floating-point arithmetic
computed by Algorithm 2, then

∣𝜖𝑆(𝑛)
𝑘 − 𝜖𝑆(𝑛)

𝑘 ∣ ≤ 𝑓𝑙(𝛾2(𝑛−1) ⊗ 𝐸𝑆
(𝑛)

𝑘

1− 3𝑛𝑢
) := �̂� (17)

where 𝐸𝑆
(𝑛)

𝑘 is computed with the recurrence relation

𝐸𝑆
(𝑖)

𝑗 = 𝐸𝑆
(𝑖−1)

𝑗 ⊕ ∣𝛽(𝑖)𝑗 ⊕ 𝜎(𝑖)𝑗 ∣ ⊕ ∣𝑥𝑖∣ ⊗ 𝐸𝑆
(𝑖−1)

𝑗−1 (18)

by Algorithm 3 in floating-point arithmetic and 3𝑛𝑢 < 1.
Proof: From (12) in Lemma 2, we have

∣𝜖𝑆(𝑛)
𝑘 − 𝜖𝑆(𝑛)

𝑘 ∣ ≤ 𝛾2(𝑛−1)𝐸𝑆
(𝑛)
𝑘 , (19)

with

𝐸𝑆
(𝑛)
𝑘 =

𝑛∑
𝑖=2

𝑚𝑖𝑛{𝑖,𝑘}∑
𝑗=𝑚𝑎𝑥{1,𝑖+𝑘−𝑛}

∣𝑤(𝑖)
𝑗 ∣𝑆(𝑛−𝑖)

𝑘−𝑗 (∣𝑥𝑖+1∣, . . . , ∣𝑥𝑛∣),

where 𝑤(𝑖)
𝑗 = 𝛽

(𝑖)
𝑗 + 𝜎

(𝑖)
𝑗 . Obviously 𝐸𝑆(𝑛)

𝑘 can be derived
from the following recurrence

𝐸𝑆
(𝑖)
𝑗 = 𝐸𝑆

(𝑖−1)
𝑗 + ∣𝛽(𝑖)𝑗 + 𝜎

(𝑖)
𝑗 ∣+ ∣𝑥𝑖∣ × 𝐸𝑆(𝑖−1)

𝑗−1

with the initial values 𝐸𝑆(𝑖)
𝑗 = 0, ∀ 𝑖, 𝑗.

From (18) and the model (3), we have

𝐸𝑆
(𝑖)

𝑗 ={[𝐸𝑆(𝑖−1)

𝑗 + ∣𝛽(𝑖)𝑗 + 𝜎
(𝑖)
𝑗 ∣

1

1 + 𝛿1
]

1

1 + 𝛿2
+

∣𝑥𝑖∣ × 𝐸𝑆
(𝑖−1)

𝑗−1

1

1 + 𝛿3
} 1

1 + 𝛿4
,

with ∣𝛿𝑡∣ ≤ 𝑢, for 𝑡 = 1, . . . , 4. Then taking into account

𝐸𝑆
(𝑖)

𝑗 ≥ 0, we obtain

(1 + 𝑢)3𝐸𝑆
(𝑖)

𝑗 ≥ 𝐸𝑆(𝑖−1)

𝑗 + ∣𝛽(𝑖)𝑗 + 𝜎
(𝑖)
𝑗 ∣+ ∣𝑥𝑖∣ ×𝐸𝑆

(𝑖−1)

𝑗−1 .

By induction we can prove that

(1 + 𝑢)3(𝑛−1)𝐸𝑆
(𝑛)

𝑘 ≥ 𝐸𝑆(𝑛)
𝑘 . (20)

Table II
ADDITION AND MULTIPLICATION IN DOUBLE-DOUBLE FORMAT

Algorithm Flops Ref.

[𝑟ℎ, 𝑟𝑙] = add dd dd(𝑎ℎ, 𝑎𝑙, 𝑏ℎ, 𝑏𝑙) 20 [23]
[𝑟ℎ, 𝑟𝑙] = prod dd d(𝑎ℎ, 𝑎𝑙, 𝑏) 22 [23], [24]

Finally, by the first part in (4) and (20), it follows from
(19) that

∣𝜖𝑆(𝑛)
𝑘 − 𝜖𝑆(𝑛)

𝑘 ∣ ≤ (1 + 𝑢)3(𝑛−1)+2𝐸𝑆
(𝑛)

𝑘 ⊗ 𝛾2(𝑛−1).

Using the second relation in (4), we obtain the expected
error bound (17).

Theorem 4: Assume 3𝑛𝑢 < 1, then a running error
bound of Algorithm 2 is given by

∣𝑆(𝑛)

𝑘 − 𝑆(𝑛)
𝑘 ∣ ≤ 𝑓𝑙(∣𝑐∣ ⊕ �̂�

1− 2𝑢
) := 𝜇, (21)

where �̂� is the error bound defined by (17) in Lemma 3 and

𝑐 is obtained by [𝑆
(𝑛)

𝑘 , 𝑐] = FastTwoSum(𝑆
(𝑛)
𝑘 , 𝜖𝑆

(𝑛)

𝑘).

Proof: From Theorem 1, we have 𝑆
(𝑛)

𝑘 + 𝑐 = 𝑆
(𝑛)
𝑘 +

𝜖𝑆
(𝑛)

𝑘 . Considering 𝑆(𝑛)
𝑘 = 𝑆

(𝑛)
𝑘 +𝜖𝑆

(𝑛)
𝑘 , we can deduce that

∣𝑆(𝑛)

𝑘 − 𝑆(𝑛)
𝑘 ∣ ≤∣𝑆(𝑛)

𝑘 − (𝑆
(𝑛)
𝑘 + 𝜖𝑆

(𝑛)

𝑘)∣+ ∣𝜖𝑆(𝑛)
𝑘 − 𝜖𝑆(𝑛)

𝑘 ∣
=∣𝑐∣+ �̂� ≤ (1 + 𝑢)(∣𝑐∣ ⊕ �̂�) ≤ 𝑓𝑙(∣𝑐∣ ⊕ �̂�

1− 2𝑢
).

In order to obtain a running relative error bound, when
𝑆
(𝑛)

𝑘 ∕= 0, we may deduce by (21) that

∣𝑆(𝑛)

𝑘 − 𝑆(𝑛)
𝑘 ∣

∣𝑆(𝑛)
𝑘 ∣

≤ 𝜇

∣𝑆(𝑛)
𝑘 ∣

≤ 𝜇

∣𝑆(𝑛)

𝑘 (1− 𝜇

𝑆
(𝑛)
𝑘

)∣

≤ 𝜇

∣𝑆(𝑛)

𝑘 ∣
+𝒪((

𝜇

∣𝑆(𝑛)

𝑘 ∣
)2).

(22)

Other techniques, such as interval arithmetic and basically
using rounding upward for all the operations, have been
used to compute a rigorous error bound. Compared with
these techniques, our method may provide a more sharper
bound along with the computed result, without requiring the
additional significant computational cost.

D. Double-Double Library

It is interesting to compare our compensated algorithm
with other approaches to obtain high-precision. A stan-
dard way is by using multiple precision libraries such as
ARPREC [2], MP [4], and MPFR [10], but if we just want
to double the IEEE-754 double precision, a more efficient
way is to use Bailey’s double-double arithmetic [1]. A
double-double number a is the pair (𝑎ℎ, 𝑎𝑙) of floating-point
numbers with 𝑎 = 𝑎ℎ+ 𝑎𝑙, ∣𝑎𝑙∣ < 𝑢∣𝑎ℎ∣ and ∣𝑎𝑙∣ < 𝑢∣𝑎∣.

187

In the sequel, we present two algorithms to compute the
addition of two double-double and a double times a double-
double shown in Table II.

Using internally double-double numbers, we can now
propose another accurate algorithm as follows.

Algorithm 4: Accurate Summation Algorithm in
Double-Double Format

Input: 𝑋 = (𝑥1, . . . , 𝑥𝑛) and 𝑘
Output: k-th ESF 𝑆(𝑛)

𝑘 (𝑋) = 𝑆
(𝑛)
𝑘 = 𝑆ℎ

(𝑛)
𝑘

function [𝑆ℎ
(𝑛)
𝑘 , 𝑆𝑙

(𝑛)
𝑘]=DDSumESF(𝑋, 𝑘)

𝑆ℎ
(𝑖)
0 = 1, 1 ≤ 𝑖 ≤ 𝑛− 1; 𝑆ℎ

(𝑖)
𝑗 = 0, 𝑗 > 𝑖; 𝑆ℎ

(1)
1 = 𝑥1;

𝑆𝑙
(𝑖)
𝑗 = 0, ∀ 𝑖, 𝑗

For 𝑖 = 2 : 𝑛
For 𝑗 = max(1, 𝑖+ 𝑘 − 𝑛) : min{𝑖, 𝑘}

[𝑟ℎ, 𝑟𝑙] = prod dd d(𝑆ℎ
(𝑖−1)
𝑗−1 , 𝑆𝑙

(𝑖−1)
𝑗−1 , 𝑥𝑖);

[𝑆ℎ
(𝑖)
𝑗 , 𝑆𝑙

(𝑖)
𝑗] = add dd dd(𝑟ℎ, 𝑟𝑙, 𝑆ℎ

(𝑖−1)
𝑗 , 𝑆𝑙

(𝑖−1)
𝑗)

end
end

Before studying the accuracy of the result of Algorithm
4, let us see the model of floating-point double-double
arithmetic, the similar results and proof can be seen in [22].

Remark 1: ([23, p.182]) For a standard model of
floating-point arithmetic for the double-double algorithms

𝑓𝑙(𝑎⊙ 𝑏) = (𝑎⊙ 𝑏)(1 + 𝛿), (23)

where 𝑎, 𝑏 are in double-double format, ⊙∈{+,−,×, /},
and 𝛿 is bounded as follows

∣𝛿∣ ≤ 𝑢𝑑𝑑, 𝑓𝑜𝑟⊙∈{+,−}; ∣𝛿∣ ≤ 2𝑢𝑑𝑑, 𝑓𝑜𝑟⊙∈{×, /} (24)

where 𝑢𝑑𝑑 = 2𝑢2 = 2−105 is the roundoff unit in double-
double format.

Theorem 5: The values 𝑆ℎ
(𝑛)

𝑘 and 𝑆𝑙
(𝑛)

𝑘 returned by
Algorithm 4 in floating-point arithmetic satisfy

∣𝑆ℎ(𝑛)𝑘 − 𝑆(𝑛)
𝑘 ∣

∣𝑆(𝑛)
𝑘 ∣

≤ 𝑢+ 1

𝑘
(1 + 𝑢)𝛾3(𝑛−1)cond(𝑆

(𝑛)
𝑘 (𝑋)),

where

𝛾3(𝑛−1) =
3(𝑛− 1)𝑢𝑑𝑑

1− 3(𝑛− 1)𝑢𝑑𝑑
=

6(𝑛− 1)𝑢2

1− 6(𝑛− 1)𝑢2
.

Proof: By induction and Remark 1, we can obtain

𝑆ℎ
(𝑛)

𝑘 +𝑆𝑙
(𝑛)

𝑘 = 𝑆
(𝑛)
𝑘 +

∑
1≤𝜋1<...<𝜋𝑘≤𝑛

𝑥𝜋1
𝑥𝜋2

. . . 𝑥𝜋𝑘
𝜃
(𝜋1...𝜋𝑘)

𝑡 ,

where ∣𝜃(𝜋1...𝜋𝑘)

𝑡 ∣ ≤ 𝛾3(𝑛−1). Then considering the property

of a double-double number ∣𝑆𝑙(𝑛)𝑘 ∣ < 𝑢∣𝑆ℎ(𝑛)𝑘 + 𝑆𝑙
(𝑛)

𝑘 ∣ we
have

∣𝑆ℎ(𝑛)𝑘 − 𝑆(𝑛)
𝑘 ∣ ≤ ∣𝑆𝑙(𝑛)𝑘 ∣+ ∣𝑆ℎ(𝑛)𝑘 + 𝑆𝑙

(𝑛)

𝑘 − 𝑆(𝑛)
𝑘 ∣

≤ 𝑢∣𝑆ℎ(𝑛)𝑘 + 𝑆𝑙
(𝑛)

𝑘 ∣+ 𝛾3(𝑛−1)𝑆
(𝑛)
𝑘 (∣𝑋∣)

≤ 𝑢∣𝑆(𝑛)
𝑘 ∣+ (1 + 𝑢)𝛾3(𝑛−1)𝑆

(𝑛)
𝑘 (∣𝑋∣).

Finally, by the definition of condition number we deduce the
desired error bound.

IV. NUMERICAL TEST

In this section we present timing and accuracy results.
All numerical experiments are performed in IEEE-754
double precision as working precision. We compare the
algorithms: SumESF, CompSumESF, CompSumESFwErr
and DDSumESF. All accuracy measurements are done in
MATLAB 7.0. All timing tests are done on a personal laptop
with Intel Pentium Dual CPU E2160, each at 1.8 GHz, and
with Microsoft Visual C++ 2008 with the default compiler
option /od on Windows 7.

A. Accuracy test

To test accuracy of our algorithms we need extremely
ill-conditioned elementary symmetric functions, hence we
designed Algorithm 5 – GenESF, shown in Appendix A,
based on GenPoly [24] and GenDot [25]. The basic idea
of this generation algorithm is constructing random vector
𝑋 with 𝑆(𝑛)

𝑘 (∣𝑋∣) ≈ cond exp × ∣𝑣∣ and 𝑆(𝑛)
𝑘 (𝑋) ≈ 𝑣.

We generated the floating-point vector1 𝑋 ∈ 𝔽
𝑛 with the

dimension 𝑛 from 10 to 30, 𝑘 being a random integer in the
interval [2, 𝑛−1], and the condition number of computing kth
elementary symmetric function varying from 104 to 1033. In
this part of numerical tests, the exact result is obtained by
the original Summation Algorithm using quad-double format
[14], which is also an option of function ExactESF in
Appendix A, besides of Symbolic method. We also assume
that the relative errors greater than 2 be the value 2 just like
[25], which means there is no useful information left.

As we can see on Figure 1, CompSumESF (Algorithm 2)
exhibits the expected behavior. When the condition number
is smaller than 1/𝑢, the relative error of CompSumESF is
equal to or smaller than 𝑢. This relative error degrades
to no precision at all for the condition number between
1/𝑢 and 1/𝑢2. Meanwhile, it is shown that CompSumESF
and DDSumESF nearly have the same accuracy. We also
present the forward error bound of DDSumESF shown as
the dashed line TheoBoundDD. In fact, DDSumESF may
be a little more accurate than CompSumESF, however it
is not significant from Figure 1. It is also shown that
the forward error bound from Theorem 3 is valid, but
pessimistic compared with the relative running error bound
from CompSumESFwErr, which is exhibited as the green
real line RunErrBound. Besides of DDSumESF, we also
compare our algorithm with LejaSumESF, which uses
Leja ordering of the zeros in conjunction with the original
Summation Algorithm (see [5]). However, it does not give
significantly higher accuracy of the results in our numerical
tests, partly due to the fact that the inputs are ordered
randomly in the generation algorithm.

1When 𝑛 and 𝑘 are larger, underflow may occur during the generation
of some most ill-conditioned ESF.

188

10
5

10
10

10
15

10
20

10
25

10
30

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Condition Number

R
e

la
tiv

e
 F

o
rw

a
rd

 E
rr

o
r

γ
2(n−1)

cond/k

u+γ
2(n−1)
2 cond/k

SumESF

CompSumESF

DDSumESF

LejaSumESF

RunErrBound

TheoBoundDD

1/u 1/u2

Figure 1. Accuracy of evaluation with respect to the condition number.

B. Running time test

When performing the running time tests, we optimize all
algorithms in C code by reversing the computing sequence of
𝑗 to reduce the required storage location. Similar technique
can be seen in [5] and be used in MATLAB’s poly. There
are some other optimizations just like that in [24], such
as taking some Split out of the recurrence. Here we do
not detail them. We deem that all the computing time of
these algorithms does not depend on the inputs but on the
dimension 𝑛 and the order 𝑘. Hence, we generate the tested
random inputs in the interval [−1, 1] with 𝑛 varying from
10 to 30.

In this part, we perform tests in two cases. In Case 1,
we test timing of the algorithms only computing kth ESF.
Then, in Case 2 we test timing of the modification algorithms
computing all ESFs simultaneously , which only change
the line of code 𝑗 = max{1, 𝑖 + 𝑘 − 𝑛} : min{𝑖, 𝑘} in
each algorithm to 𝑗 = 1 : 𝑖. We exhibit the measured
running time ratios in two cases in Table III. Case 2
corresponds to the application of computing the coefficients
of polynomial from zeros. For simplification, we still denote
these algorithms by the same names as before. In both
cases, it seems that CompSumESF is significantly faster than
DDSumESF while the results share the same accuracy, and
that the over-cost due to the running error bound supported
by CompSumESFwErr is quite reasonable.

We also consider the flop counts ratios of the algorithms
in Case 2 (there are too many comparison operations in
Case 1 to be suitable for flop counting). The theoretical
ratio between CompSumESF and SumESF in the optimized
C code is approximatly 11.5, which is much smaller than

Table III
TIME RATIOS OF COMPUTING k-TH ESF AND ALL ESFS

CompSumESF

SumESF
DDSumESF
SumESF

CompSumESF

DDSumESF

CompSumESF

CompSumESFwErr

Case 1 3.05 5.42 57.42% 69.91%
Case 2 3.91 7.48 52.97% 68.02%

the running time ratios 7.48 shown in Table III. Thanks to
the analysis in terms of instruction level parallelism (ILP)
(see details in [21], [24]), this phenomenon is surprising,
but reasonable. Moreover, since the renormalization steps in
DDSumESF may break ILP, the measured running time ratio
between CompSumESF and DDSumESF is usually smaller
than the theoretical one (≈ 61%).

As a consequence, it seems that CompSumESF is a fast
and accurate algorithm to compute elementary symmetric
functions and can be well used in computing the coefficients
of polynomial from zeros.

V. CONCLUSIONS AND FUTURE WORK

We have presented a compensated Summation Algorithm
for the computation of the elementary symmetric functions
with the real floating-point inputs. This algorithm yields a
result as accurate as if computed by the traditional algorithm
in twice the working precision but using standard double
precision. We compared this algorithm with the Summa-
tion Algorithm in double-double format and showed that
our algorithm was faster while sharing the same accuracy.
This algorithm also performed well on the application of
computing the coefficients of polynomials from zeros.

In this paper, we have only dealt with the case of real
floating-point inputs, we will consider designing the corre-
sponding compensated Summation Algorithm for complex
floating-point inputs based on the results of [13]. The
computation of ESF’s derivative is also an important part
of CMLE in the Rash model, we will propose the corre-
sponding fast and accurate algorithm. And it is foreseeable
that even if underflow occurs, our algorithm would still show
excellent behavior, only requiring a more sophisticated error
analysis. All these will be considered in the future.

REFERENCES

[1] D.H. Bailey, “Library for Double-Double and Quad-
Double Arithmetric (QD library),” Available from <
http://www.nersc.gov/∼dhbailey/mpdist/mpdist.html>.

[2] D.H Bailey, Y. Hida, X.S. Li, and B. Thompson, “ARPREC:
an arbitrary precision computation package,” Technical report
Lawrence Berkeley National Laboratory, 2002.

[3] F. Baker and M. Harwell, “Computing elementary symmetric
functions and their derivatives: A didactic,” Applied Psycho-
logical Measurement, vol. 20, no. 2, pp. 169-192, 1996.

[4] R.P. Brent, “A FORTRAN multiple-precision arithmetic pack-
age,” ACM Transactions Mathematical Software, vol. 4, no. 1,
pp. 57-70, 1978.

189

[5] D. Calvetti and L. Reichel, “On the evaluation of polynomial
coefficients. Numerical Algorithms, vol.33, pp.153-161, 2003.

[6] O. Caprani, “Roundoff Errors in Floating-Point Summation,”
BIT Numerical Mathematics., vol. 15, pp.5-9, 1975.

[7] T.J. Dekker, “ A floating-point technique for extending the
available precision,” Numerische Mathematik, vol. 18, no. 3,
pp. 224-242, 1971.

[8] A. Eisinberg and G. Fedele, “A property of the elementary
symmetric functions,” Calcolo, vol. 42, no. 1, pp. 31–36, 2005.

[9] G. Fischer, Einführung in die Theorie psychologischer tests:
Grundlagen und Anwendungen, Huber, Bern, Switzerland,
1974.

[10] L. Fousse, G. Hanrot, V. lefèvre, P. pélissier, and P. Zim-
mermann, “MPFR: A Multiple-Precision Binary Floating-Point
Library with Correct Rounding,” ACM Transactions Mathemat-
ical Software, vol. 33, no. 2, pp.13:1-13:15, 2007.

[11] S. Graillat, “Accurate floating-point product and exponenti-
ation,” IEEE Transactions on Computers, vol. 58, no. 7, pp.
994-1000, 2009.

[12] S. Graillat, P. Langlois, and N. Louvet, “Algorithms for
accurate, validated and fast polynomial evaluation,” Japan
Journal of Industrial and Applied Mathematics, vol. 26, no.
2, pp. 215-231, 2009.

[13] S. Graillat and V. Morain, “Error-free transformations in
real and complex floating point arithmetic,“In Proceedings
of the International Symposium on Nonlinear Theory and its
Applications, Vancouver, Canada, Sept. 2007, pp. 341-344.

[14] Y. Hida, X. Li, and D. Bailey, “Algorithms for quad-double
precision floating point arithmetic. In Proceedings 15th IEEE
Symposium on Computer Arithmetic, N. Burgess and L. Ci-
miniera, Eds., Vail, CO, Jun. 2001, pp. 155-162

[15] N. Higham, Accuracy and stability of numerical algorithms,
SIAM, Philadelphia, second edition, 2002.

[16] H. Jiang, S. Graillat, R. Barrio, “Accurate computing elemen-
tary symmetric functions,” ACM Communications in Computer
Algebra (ISSAC’12 poster), vol. 46, no. 3, pp.102-103, 2012.

[17] H. Jiang, S. Graillat, C.B. Hu, S.G. Li, X.K. Liao, L.Z. Cheng,
F. Su, “Accurate evaluation of the k-th derivative of a poly-
nomial and its application,” Journal of Computational and
Applied Mathematics, vol. 243, pp.28-47, 2013.

[18] D. Knuth, The art of computer programming: Seminumerical
algorithms, volume 2, Addison-Wesley, third edition, 1998.

[19] P. Kornerup, C. Lauter, V. Lefèvre, N. Louvet, and J. Muller,
“ Computing correctly rounded integer powers in floating-point
arithmetic,” ACM Transactions Mathematical Software, vol. 37,
no. 1, pp.4:1-4:23, 2010.

[20] P. Langlois and N. Louvet, “How to ensure a faithful poly-
nomial evaluation with the compensated Horner algorithm,” In
Proceedings 18th IEEE Symposium on Computer Arithmetic,
Montpellier, France, Jun. 2007, pp. 141-149.

[21] P. Langlois and N. Louvet, “More instruction level parallelism
explains the actual efficiency of compensated algorithms,”
Technical report, hal-00165020, DALI Research Team, Uni-
versity of Perpignan, France, 2007.

[22] C. Lauter, “Basic building blocks for a triple-double interme-
diate format,” Technical report RR2005-38, LIP, France, 2005.

[23] X. Li, J. Demmel, D. Bailey, G. Henry, Y. Hida, J. Iskandar,
W. Kahan, S. Kang, A. Kapur, M. Martin, et al, “ Design,
implementation and testing of extended and mixed precision

blas,” ACM Transactions Mathematical Software, vol. 28, no.
2, pp. 152–205, 2002.

[24] N. Louvet, “Compensated algorithms in floating point arith-
metic: accuracy, validation, performances,” PhD thesis, Uni-
versité de Perpignan Via Domitia, 2007.

[25] T. Ogita, S. Rump, and S. Oishi, “Accurate sum and dot
product,” SIAM Journal on Scientific Computing, vol. 26, no.
6, pp. 1955–1988, 2005.

[26] R. Rehman and I. Ipsen, “Computing characteristic polyno-
mials from eigenvalues,” SIAM Journal on Matrix Analysis and
Applications, vol. 32, no. 1, pp. 90–114, 2011.

[27] S. Rump, “Ultimately fast accurate summation. SIAM Journal
on Scientific Computing, vol. 31, no. 5, pp. 3466-3502, 2009.

[28] S. Rump, T. Ogita, and S. Oishi, “Accurate floating-point
summation part I: Faithful rounding. SIAM Journal on Sci-
entific Computing, vol. 31, no. 1, pp. 189-224, 2008.

[29] S. Rump, T. Ogita, and S. Oishi, “Accurate floating-point
summation part II: Sign, 𝑘-fold faithful and rounding to
nearest,” SIAM Journal on Scientific Computing, vol. 31, no.
2, pp. 1269-1302, 2008.

[30] W. Miller, “Graph Transformations for Roundoff Analysis,”
SIAM Journal on Computing, vol. 5, pp. 204-216, 1976.

APPENDIX

Algorithm 5: The generation algorithm of ill-conditioned
elementary symmetric function

function [𝑥, 𝑐𝑜𝑛𝑑 𝑟𝑒𝑎𝑙] = GenESF(𝑛, 𝑐𝑜𝑛𝑑 𝑒𝑥𝑝, 𝑐𝑜𝑒𝑓 𝑛𝑢𝑚)
% input: n the dimension
% cond exp the expected condition number
% coef num k-th elementary symmetric function’s ‘k’
% output: x the real vector
% cond real the actual condition number
% uses: ExactESF(x,k) calculating exact result 𝑆(𝑛)

𝑘 (𝑋)
𝑛2 = round(𝑛/2);
𝑥 = zeros(𝑛, 1);
𝑏 = log2(𝑐𝑜𝑛𝑑 𝑒𝑥𝑝)/𝑐𝑜𝑒𝑓 𝑛𝑢𝑚;
𝑒 = round(rand(𝑛2, 1) ∗ 𝑏);
𝑒(1 : 𝑐𝑜𝑒𝑓 𝑛𝑢𝑚) = (𝑏+ 1). ∗ ones(𝑐𝑜𝑒𝑓 𝑛𝑢𝑚, 1);
if 𝑐𝑜𝑒𝑓 𝑛𝑢𝑚 > 𝑛2

𝑛2 = 𝑐𝑜𝑒𝑓 𝑛𝑢𝑚;
end
𝑝𝑟𝑜𝑑 = 1;
for 𝑖 = 1 : 𝑐𝑜𝑒𝑓 𝑛𝑢𝑚

𝑝𝑟𝑜𝑑 = 𝑝𝑟𝑜𝑑 ∗ 𝑥(𝑖);
end
𝑖𝑚𝑝 =
power(𝑐𝑜𝑛𝑑 𝑒𝑥𝑝/abs(𝑝𝑟𝑜𝑑 ∗ 𝑐𝑜𝑒𝑓 𝑛𝑢𝑚), 1/𝑐𝑜𝑒𝑓 𝑛𝑢𝑚);
𝑥(1 : 𝑐𝑜𝑒𝑓 𝑛𝑢𝑚) = 𝑥(1 : 𝑐𝑜𝑒𝑓 𝑛𝑢𝑚). ∗ 𝑖𝑚𝑝;
𝑒 = round(linspace(𝑏, 0, 𝑛− 𝑛2));
for 𝑖 = 𝑛2 + 1 : 𝑛

𝑡1 = ExactESF(𝑥(1 : 𝑖− 1), 𝑐𝑜𝑒𝑓 𝑛𝑢𝑚);
𝑡2 = ExactESF(𝑥(1 : 𝑖− 1), 𝑐𝑜𝑒𝑓 𝑛𝑢𝑚− 1);
𝑥(𝑖) = ((2 ∗ rand− 1) ∗ 2𝑒(𝑖− 𝑛2)− 𝑡1)/𝑡2;

end
𝑖𝑛𝑑𝑒𝑥 = randperm(𝑛);
𝑥 = 𝑥(𝑖𝑛𝑑𝑒𝑥);
𝑑 = ExactESF(𝑥, 𝑐𝑜𝑒𝑓 𝑛𝑢𝑚);
𝐷 = ExactESF(abs(𝑥), 𝑐𝑜𝑒𝑓 𝑛𝑢𝑚);
𝑐𝑜𝑛𝑑 𝑟𝑒𝑎𝑙 = 𝑐𝑜𝑒𝑓 𝑛𝑢𝑚 ∗𝐷/abs(𝑑);

190

