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Stef GRAILLAT

Abstract. A polynomial p is robustly stable when all the zeros of the complex

polynomials within a given distance of p lie in the left half-plane. The pseudozero

abscissa, which is the largest real part of those zeros, measures the robust sta-

bility of p. Three algorithms to compute the pseudozero abscissa are presented.

The first one is a graphical tool, the second one is a bisection algorithm whereas

the third one is a criss-cross algorithm.
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1. Introduction. In control theory, classical transfer functions associ-

ated with some systems are often written as H(z) = N(z)/D(z), where N

and D are complex polynomials and z is a parameter of the system. The

system described with the function H is stable (in the sense of Hurwitz)

if the polynomial D is stable, that is if all the zeros of D have negative

real part. Since uncertainties on the coefficients of the polynomials are

unavoidable in most real problems (data uncertainty, rounding error), it

is useful to know if the system still remains stable when the polynomial

coefficients suffer from an uncertainty of ε > 0. In such cases, the system

is robustly stable. Similarly the polynomial D is robustly stable when all

the zeros of the complex polynomials within a given distance ε > 0 of p

lie in the left half-plane. The largest real part of these zeros measures the

robust stability of the polynomial p and is defined to be the pseudozero

abscissa of p. This paper focuses on this pseudozero abscissa.
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Using a companion matrix, this polynomial problem could be refor-

mulated as a matrix problem. A matrix A ∈ C
n×n is stable if all its

eigenvalues have a negative real part, and unstable otherwise. When A

is stable, it may be interesting to know if the matrix remains stable after

small perturbations on the its coefficients. We say that A is robustly stable

if all eigenvalues of complex matrices within a given distance of A lie in

the left half-plane. The pseudospectra abscissa of A is the largest real part

of such eigenvalues; it measures the robust stability of A. This quantity

has been studied in numerical linear algebra (Burke et al.,2003a, Burke

et al.,2003b). To ensure that the pseudospectra abscissa of the companion

matrix A is the associated pseudozero abscissa of the polynomial p, the

perturbed matrix A+E has to conserve the companion structure of A. Up

to our knowledge, no existing matrix algorithm guarantees this property.

Moreover, it is not worth to transform a polynomial problem into a matrix

problem which increases the complexity of the problem.

In this paper, we propose three algorithms that compute the polyno-

mial pseudozero abscissa staying in the field of polynomials. In these three

algorithms, the key tool to succeed is the polynomial pseudozero set in-

troduced by Mosier (Mosier,1986). The first algorithm is a graphical use

of pseudozero set plots. The second algorithm is a symbolic-numeric algo-

rithm (sometimes called hybrid algorithm, see the chapter called “Hybrid

Methods” by Kaltofen in (Grabmeier et al.,2003)) based on a bisection.

It means that we use algebraic techniques (here Sturm sequences) within

a numerical procedure. This approach has been previously proposed in

(Boyd et al.,1989) to count the number of imaginary eigenvalues of an

Hamiltonian matrix. It seems that it has not received much more atten-

tion whereas it can provide efficient and accurate algorithms. The third

one is a criss-cross strategy. It optimizes the previous bisection step moving

alternatively along specific horizontal and vertical lines in the pseudozero

set.

The paper is organized as follows. In Section 2 and 3, we present defi-

nitions and useful results about pseudozero sets. In Section 4, we propose

three algorithms to compute the pseudozero abscissa.

2. Definition and computation of pseudozero set. In this section, we

present some results about pseudozero set. In the first subsection, we de-

fine the notion of pseudozero set. In the second subsection, we provide

a computable formula for the pseudozero set. In the last subsection, we

present an algorithm to compute it.
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2.1. Definition of the ε-pseudozero set. For n > 1, let Pn be the linear

space of polynomials of degree at most n with complex coefficients and Mn

the subset of monic polynomials of degree n. Let p ∈ Mn be given by

p(z) =

n∑

i=0

piz
i, pn = 1. (1)

Representing p by the vector (p0, . . . , pn−1)
T of its coefficients, we define

the norm ‖ · ‖ on Mn as the 2-norm on Cn of the corresponding vector. It

means that

‖p‖ =

(
n−1∑

i=0

|pi|
2

)1/2

.

We recall the notion of pseudozero set and we give a useful computable

characterization. These results can be found in (Mosier,1986, Stetter,2004,

Toh and Trefethen,1994).

Given a real ε > 0, the ε-neighborhood of p ∈ Mn is the set

Nε(p) = {p̂ ∈ Mn : ‖p − p̂‖ 6 ε} . (2)

The ε-pseudozero set of p is the set of all the zeros of the ε-neighborhood,

that is to say,

Zε(p) = {z ∈ C : p̂(z) = 0 for p̂ ∈ Nε(p)} . (3)

2.2. A computable form of the ε-pseudozero set. One has the follow-

ing characterization of the ε-pseudozero set.

Theorem 1 [Trefethen and Toh (Toh and Trefethen,1994)]. The ε-

pseudozero set satisfies

Zε(p) =

{
z ∈ C : g(z) :=

|p(z)|

‖z‖
6 ε

}
, (4)

where z = (1, z, . . . , zn−1)T .

This theorem was first proved in (Toh and Trefethen,1994) for the 2-

norm. A proof for an arbitrary norm can be found in (Stetter,2004, Graillat

and Langlois,2003). We recall the proof of (Toh and Trefethen,1994) for

completeness.
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Proof. If z ∈ Zε(p) then there exists p̂ ∈ Mn such that p̂(z) = 0 and

‖p − p̂‖ 6 ε. From Hölder’s inequality |xT y| 6 ‖x‖‖y‖, we get

|p(z)| = |p(z) − p̂(z)| = |

n∑

i=0

(pi − p̂i)z
i| 6 ‖p − p̂‖‖z‖.

It follows |p(z)| 6 ε‖z‖.

Conversely, let u ∈ C be such that |p(u)| 6 ε‖u‖. Let us write u =

|u|eiθ. Let us introduce the polynomials r and pu defined by

r(z) =

n−1∑

k=0

rkzk with rk = |u|ke−ikθ, (5)

pu(z) = p(z) −
p(u)

r(u)
r(z). (6)

It is clear that r(u) = ‖u‖2 = ‖r‖2, and pu(u) = 0. So we have

‖p − pu‖ =
|p(u)|

|r(u)|
‖r‖ 6 ε,

hence u ∈ Zε(p).

2.3. Computing the ε-pseudozero set. Theorem 1 yields a computable

expression for the ε-pseudozero set. It consists in evaluating the easily

computable function g on a grid of the complex plane and comparing its

value to the ε parameter.

MATLAB software, for example, provides primitives that allow us to

plot pseudozeros with the following very simple Algorithm 1. Such an

implementation is very similar to existing pseudospectra software (Embree

and Trefethen,2004).

Algorithm 1 Computation of ε-pseudozero set

Require: polynomial p and precision ε

Ensure: pseudozero set layout in the complex plane

1: We grid a square containing all the roots of p with the MATLAB

command meshgrid.

2: We compute g(z) for the whole points z on the grid.

3: We draw the level line |g(z)| = ε with the MATLAB command

contour.
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3. Topological and geometric properties of pseudozero set. In this

section, we establish that the pseudozero set is a compact set and that

the closure of the strict pseudozero set is the pseudozero set. The strict

ε-pseudozero set is defined to be

Z ′

ε(p) = {z ∈ C : q(z) = 0 where ‖p − q‖ < ε}.

With the same proof as in Theorem 1, it follows that

Z ′

ε(p) = {z ∈ C : g(z) < ε}, (7)

where

g(z) =
|p(z)|

‖z‖
, ‖z‖ = ‖(1, z, . . . , zn−1)‖.

Let the function h : R2 → R be defined by

hε(x, y) = |p(x + iy)|2 − ε2
n−1∑

j=0

(x2 + y2)j . (8)

For a fixed x0, the function hε(x0, ·) is a polynomial of degree 2n. In the

same way, for a fixed y0, the function hε(·, y0) is a polynomial of degree

2n. From Theorem 1, the ε-pseudozero set satisfies

Zε(p) = {(x, y) ∈ R
2 : hε(x, y) 6 0}.

Theorem 2. The ε-pseudozero set of p ∈ Mn is a compact set con-

tained in the ball of radius 1 + ‖p‖+ ε.

Proof. As the function h is continuous, the set Zε(p) = h−1((−∞, ε])

is closed. Let us denote by {zj}j=1:n the roots of the polynomial p and

r = maxj |zj |. It is well-known (see (Mignotte,1992) for example) that

r 6 1 + ‖p‖.

If z ∈ Zε(p) then there exists p̂ ∈ Pn satisfying both both p̂(z) = 0

and ‖p − p̂‖ 6 ε. It follows that |z| 6 1 + ‖p̂‖. Furthermore, we have

|‖p̂‖ − ‖p‖| 6 ‖p̂ − p‖ 6 ε and so ‖p̂‖ 6 ‖p‖ + ε. Hence |z| 6 1 + ‖p‖+ ε.

The following theorem shows that each connected component of Zε(p)

contains at least one root of p ∈ Mn. It extends Theorem 2 from

Mosier (Mosier,1986) for monic polynomials and the 2-norm.
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Theorem 3. If q ∈ Nε(p), then p and q have the same number of roots,

counting multiplicities, in each connected component of Zε(p). Further-

more, there is at least one root of p in each connected component of Zε(p).

Proof. Let us define the monic polynomials pt(z) = (1− t)p(z)+ tq(z),

t ∈ [0, 1]. We have ‖p − pt‖ = t‖p − q‖, t ∈ [0, 1], so pt belongs to Nε(p).

This implies that all roots of pt lie in Zε(p). As the roots depend con-

tinuously of the coefficients of the polynomial, when t varies from 0 to 1,

the roots of pt trace continuous paths from the roots of p to the roots of

q. Since the connected components are bounded and disjoint, no root can

move to another component nor disappear. Thus all the polynomials pt

have the same number of roots in each connected component.

Now we prove the second assertion. Let z belonging to a connected com-

ponent of Zε(p). By definition, there exists a polynomial p̂ ∈ Nε(p) such

that p̂(z) = 0. Since p has the same number of roots as p̂ in the connected

component, it follows that p has at least a root in this component.

Theorem 4. The closure of the strict ε-pseudozero set is the ε-

pseudozero set.

Proof. As Z ′

ε(p) ⊂ Zε(p) and Zε(p) is closed, it is clear that Z ′
ε(p) ⊂

Zε(p). Now, let z ∈ Zε(p) be such that g(z) = ε. Thus there exists q ∈

Nε(p) satisfying q(z) = 0 and ‖p − q‖ = ε. Let us define the polynomial

pt(z) = (1 − t)p(z) + tq(z), t ∈ [0, 1]. We clearly have p0(z) = p(z) and

p1(z) = q(z). Moreover, ‖pt − p‖ = t‖p − q‖ = tε < ε for all t ∈ [0, 1).

Since the roots depend continuously of the coefficients of the polynomial

there exist n continuous function t 7→ zi(t), i = 1 : n that represent the n

roots of pt. Consequently, we have pt(zi(t)) = 0 for i = 1 : n and t ∈ [0, 1].

By taking limit as t → 1, we obtain p1(zi(1)) = q((zi(1)) = 0. Hence,

zj(1) = z for some j in {1, . . . , n}. Taking into account that ‖pt − p‖ < ε

and pt(zj(t)) = 0, we conclude that zj(t) ∈ Z ′

ε(p) for t ∈ [0, 1). This ends

the proof.

4. Pseudozero abscissa. In this section, we define the pseudozero ab-

scissa and provide three algorithms to compute this quantity. The first

one is a qualitative algorithm based on drawing a pseudozero set. The sec-

ond one is based on a bisection algorithm. The third one is based on a

criss-cross algorithm with vertical and horizontal searches.
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As in (Burke and Overton,2001), we define the abscissa mapping a :

Pn → R as follows,

a(p) = max{Re(z) : p(z) = 0}.

Our first aim is to prove that the abscissa mapping a is continuous on

Mn. It is clear that a is not continuous on Pn as it is proved in (Burke

et al.,2003c). Indeed, let us consider the polynomial qt(z) = (1 − tz)p(z),

where p is a polynomial of degree at most n − 1. We have qt → p when

t → 0, whereas a(qt) = 1/t, that is arbitrary larger than a(p).

To prove the continuity of a on Mn, we will use the following result

known as “the continuous dependence of the zeros of a polynomial on

its coefficients”. The proof can be found in (Horn and Johnson,1990, Os-

trowski,1966). In the following proposition, Sn is the symmetric group of

degree n.

Proposition 1 [Ostrowski (Ostrowski,1966)]. Let

p(z) = p0 + p1z + · · · + pn−1z
n−1 + zn

be a monic polynomial with complex coefficients. Then, for every ε > 0,

there is η > 0 such that for any polynomial

q(z) = q0 + q1z + · · · + qn−1z
n−1 + zn

satisfying

max
06i6n

|pi − qi| < η,

we have

min
σ∈Sn

max
16j6n

|xj − yσ(j)| < ε,

where (xj) and (yj), j = 1, . . . , n, are respectively the zeros of p and q.

We can now prove the continuity of a on Mn.

Proposition 2. The abscissa mapping

a : Pn → R,

defined by a(p) = max{Re(z) : p(z) = 0} is continuous on Mn.
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Proof. Let p in Mn and ε > 0. From Proposition 1, there is η > 0

such that for any q in Mn satisfying

max
06i6n

|pi − qi| < η,

we have

min
σ∈Sn

max
16j6n

|xj − yσ(j)| < ε,

where (xj) and (yj), j = 1, . . . , n, are respectively the zeros of p and q.

This means that there is a permutation σ in Sn such that

max
16j6n

|Re(xj) − Re(yσ(j))| 6 max
16j6n

|xj − yσ(j)| < ε.

We have

|a(q) − a(p)| = | max
16j6n

Re(yj) − max
16j6n

Re(xj)|

= | max
16j6n

Re(yσ(j)) − max
16j6n

Re(xj)|

6 max
16j6n

|Re(yσ(j)) − Re(xj)|

6 ε.

We have proved the continuity of a on Mn.

A natural extension of the abscissa mapping when polynomials are

perturbed is the ε-pseudozero abscissa mapping aε : Pn → R defined by

aε(p) = max{Re(z) : z ∈ Zε(p)}. (9)

The ε-pseudozero abscissa is the maximum value of the real part over

the ε-pseudozero set. From Theorem 4, we deduce that the ε-pseudozero

abscissa satisfies

aε(p) = sup{Re(z) : z ∈ Z ′

ε(p)}.

We can introduce the function hε defined in (8) in definition (9) of the

ε-pseudozero abscissa since

aε(p) = sup{x : (x, y) ∈ R
2, hε(x, y) 6 0}.

In the sequel, we propose to compute the ε-pseudozero abscissa presenting

three algorithms.
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4.1. Drawing pseudozero set. A first way to compute the pseudozero

abscissa is to draw the ε-pseudozero set using Algorithm 1. Once one has

drawn this set, it suffices to draw the vertical line that intersects the right-

most point within the ε-pseudozero. Thus the pseudozero abscissa is the

real value being the intersection between this vertical line and the real

axis.

Let us choose for example p(z) = z3 + 4z2 + 6z + 4 with ε = 0.1. We

draw the ε-pseudozero set (see Figure 1) and identify that aε(p) ≈ −0.9.

−2 −1.5 −1 −0.5 0

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 1. Pseudozero set of p(z) = z3 + 4z2 + 6z + 4 with ε = 0.1

Plotting pseudozero set gives qualitative and quantitative interest-

ing informations about the robust stability of polynomials. They can be

easily plotted using popular software as MATLAB. Other graphical al-

gorithms relying on pseudozero set have been proposed in (Graillat and

Langlois,2003).

4.2. A bisection algorithm. In this subsection we introduce a bisection

algorithm to compute aε(p) to an arbitrary accuracy. The key step to derive

this algorithm is Theorem 5 below. Before stating this theorem, we need

the following lemma.

Lemma 1. For any point z1 in Zε(p), there exists a point z2 satisfying

Re(z1) = Re(z2) and hε(z2) = 0.
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Proof. We can take z2 on the boundary of the intersection of the ver-

tical line through z1 and the pseudozero set Zε(p) (it is a compact set).

The main result in this subsection is the following theorem. It yields a

computable property of lower bounds of aε(p).

Theorem 5. For any real x > a(p), the following statements are equiv-

alent:

1. x 6 aε(p);

2. the polynomial equation

hε(x, y) = 0, (10)

admits a real solution y.

Proof. We first show (i) ⇒ (ii). If x = aε(p) then we choose a point z

solving the pseudozero abscissa problem, that is to say such that Re(z) =

aε(p). From Lemma 1, it is clear that z = x + iy for some real y and

hε(x, y) = 0. If x < aε(p), by definition of aε(p), there exists a point z1

such that Re(z1) > x and g(z1) < ε. The connected component of z1 in

Zε(p) contains a root z2 of p by Theorem 3. Therefore, there is a continuous

arc in the component connecting z1 and z2 (see the proof of Theorem 3).

But since Re(z1) > x > Re(z2), this arc must contain a point z3 such that

Re(z3) = x. From Lemma 1, we get a solution to equation (10).

We now prove (ii) ⇒ (i). Let y ∈ R be such that hε(x, y) = 0. This implies

that x + iy ∈ Zε(p). Using the definition of aε(p), we derive x 6 aε(p).

Now we can explain the bisection algorithm that yields an approxi-

mation of aε(p). From the definition of aε(p) and Theorem 2, we know

that aε(p) lies in the interval [a(p), 1 + ‖p‖+ ε]. Let us denote x the mid-

point of this interval. We compute the solution of equation hε(x, y) = 0,

y ∈ R. If one of the roots is real then we deduce that x 6 aε(p) by Theo-

rem 5, and we replace the current interval by [x, 1 + ‖p‖ + ε]. Otherwise,

if x > aε(p), we replace the current interval by [a(p), x]. The implemen-

tation of this method is proposed with Algorithm 2 where τ denotes the

requested accuracy for the approximation of aε(p).

The difficult step of this algorithm is to test whether the polynomial

Hx(y) = hp,ε(x, y) = h2ny2n + · · · + h1y + h0 has real roots. We recall

that Hx has real coefficients because of the definition of hε. We describe

how to solve this question using Sturm sequences. It is well-known that
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Algorithm 2 Computation of ε-pseudozero abscissa by bisection

Require: a polynomial p, the parameter ε and a tolerance τ

Ensure: a number α such that |α − aε(p)| 6 τ

1: γ := a(p), δ := 1 + ‖p‖+ ε

2: while |γ − δ| > τ do

3: x := γ+δ
2

4: if the equation hε(x, y) = 0, y ∈ C has a real solution then

5: γ := x

6: else

7: δ := x

8: end if

9: end while

10: return α = γ+δ
2

the maximum modulus r of the zeros of Hx satisfies (see (Mignotte,1992))

r 6
‖Hx‖

|h2n|
.

Consequently, the possible real roots of Hx belong necessarily to the in-

terval [−r, r]. One may apply the Euclid’s algorithm to the polynomial Hx

and its derivative H ′

x. Denote H0 = Hx and H1 = H ′

x and define

Hi+1 = − rem(Hi−1, Hi),

which is the remainder of the division of Hi−1 by Hi. Let m be the smallest

integer such that Hm+1 = 0. Let vH(−r) be the number of sign changes

in the leading coefficients of H0(−r), . . . , Hm(−r) and let vH(r) be the

number of sign changes in the leading coefficients of H0(r), . . . , Hm(r).

So we have defined a Sturm sequence and Sturm’s Theorem ensures that

Hx has exactly vH(−r) − vH(r) distinct real roots (see (Mignotte,1992)).

In particular Hx has a real root if and only if vH(−r) 6= vH(r). Let us

remark that Sturm sequences suffice to answer to the line 4 of Algorithm

2 without having to compute all the roots of Hx(y) = hε(x, y). Instead of

Strum sequences, we could use Sturm-Habicht sequences (see (Gonzalez-

Vega and Necula,2002)). Since Sturm-Habicht sequences deal with real

roots in a generic way, this would avoid to compute Sturm sequences at

each step of the algorithm.
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Algorithm 2 is implemented using the Maple software. This choice is

natural since we need some algebraic manipulations of polynomials.

Let us take the same example as in Subsection 4.1, that is, p(z) = z3+

4z2+6z+4 with ε = 0.1 and τ = 0.00001. We find that aε(p) ≈ −0.919901

which is more precise that the graphical result given previously.

Let us comment another example choosing q(z) = z5 + 5z4 + 10z3 +

10z2+5z+1 and ε = 0.001. Algorithm 2 gives aε(q) = −0.719669. Figure 2

represents the ε-pseudozero set of q for ε = 0.001, τ = 0.00001 and gives

a graphical representation of aε(p).

−1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Fig. 2. Pseudozero set of q(z) = z5 +5z4 +10z3 +10z2 +5z +1 with

ε = 0.001

4.3. A criss-cross algorithm. We present in this last subsection a criss-

cross algorithm inspired from (Boyd and Balakrishnan,1990, Burke et

al.,2003b). We begin with the following result.

Lemma 2. For any x ∈ (a(p), aε(p)), there exists y ∈ R such that

hε(x, y) < 0.

Proof. Let z0 be a root of p such that Re(z0) = a(p) and z1 ∈ Zε(p) be

such that Re(z1) = aε(p). Let q ∈ Mn such that q(z1) = 0 and ‖p−q‖ 6 ε.

Let us define the polynomial pt(z) = (1 − t)p(z) + tq(z), t ∈ [0, 1]. We

clearly have pt ∈ Mn, p0(z) = p(z) and p1(z) = q(z). Let us introduce

ϕ : [0, 1] → R be the function t 7→ a(pt). The continuity of a on Mn (see
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Proposition 2) ensures that the function ϕ is continuous. As ϕ(0) = a(p)

and ϕ(1) > aε(p), there exists t ∈ (0, 1) such that a(pt) = x. As ‖p−pt‖ <

ε, at least one root of pt with real part x lies in Z ′

ε(p), hence h(x, y) < 0.

Algorithm 3 Computation of ε-pseudozero abscissa by criss-cross

Require: a polynomial p, the parameter ε

1: Initialize: x1 = a(p) and r = 1

2: Vertical search: find open intervals Ir
1 , . . . , Ir

lr
where h(xr , y) < 0 for

y ∈ ∪lr
k=1I

r
k

3: Horizontal search: for each Ir
k , define ωr

k = midpoint(Ir
k ) and find the

largest real zeros xr
k of the function h(·, ωr

k) for k = 1 : lr
4: Define xr+1 = max{xr

k, k = 1, . . . , lr}, increment r by one and return

to Step 2.

In the following theorem, we prove the convergence of Algorithm 3.

Theorem 6. The criss-cross algorithm converges to the pseudozero ab-

scissa aε(p).

Proof [Sketch of proof]. The proof follows the ideas of the proof of

Theorem 3.2 in (Burke et al.,2003b). Therefore we will only give an outline

of the proof. We denote Ir
i = (lri , u

r
i ). The fact that the new iterate xr+1

is a zero of h(·, ωr
k) means that xr+1 6 aε(p). Since x1 = a(p) 6 aε(p), we

prove by induction that xr 6 aε(p) for all r. If at iteration r, xr = aε(p),

there is nothing to do. Otherwise, there exists j such that lrj < ur
j and so

hε(x
r, ωr

j ) < 0. It follows that xr+1 > xr. So we deduce that the sequence

(xr) is increasing and bounded above strictly by aε(p) and bounded below

by a(p). It follows that the sequence (xr) converges to a real number x∞

less or equal to aε(p). Let us suppose that x∞ < aε(p). In this case,

from Lemma 2, we derive that there exists an open interval in which we

have hε(x
∞, y) < 0. It follows that one can find ωr

k for sufficiently large

r and k such that hε(x
∞, ωr

k) 6 0. This implies that xr+1 > x∞. This

contradicts the fact that the sequence (xr) is strictly increasing. Hence we

have x∞ = aε(p).

5. Conclusion. In this paper, we have presented three algorithms to

compute the pseudozero abscissa. The first one (drawing pseudozero set)

is a qualitative algorithm based on plots. It seems to be the least efficient

but it may be quite useful if we want to visualize the situation. The two
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next ones are symbolic-numeric algorithms that use analytical properties

of pseudozero set. One is a bisection algorithm and the other one is a criss-

cross algorithm. The latter seems to be the most efficient but needs the

computation of polynomial roots which is expensive. Future work needs to

be done on this algorithm.
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