
Applied Mathematics and Computation 273 (2016) 1160–1178

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Accurate, validated and fast evaluation of elementary

symmetric functions and its application

Hao Jiang a,1,∗, Stef Graillat b, Roberto Barrio c,2, Canqun Yang d,3

a School of Computer Science, National University of Defense Technology, Changsha 410073, China
b PEQUAN, LIP6, Université Pierre et Marie Curie, Paris 75025, France
c Dpto. de Matemática Aplicada and IUMA, Universidad de Zaragoza, Zaragoza E-50009, Spain
d Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Changsha 410073,

China

a r t i c l e i n f o

Keywords:

Elementary symmetric functions

Floating-point arithmetic

Roundoff error

Error-free transformation

Compensated algorithm

Accurate algorithm

a b s t r a c t

This paper is concerned with the fast, accurate and validated evaluation of elementary sym-

metric functions in floating-point arithmetic. We present two new compensated algorithms,

with real and complex floating-point inputs respectively, by applying error-free transforma-

tions to improve the accuracy of the so-called summation algorithm that is used, by example,

in the MATLAB’s poly function. We derive forward roundoff error bounds and running error

bounds for our new algorithms. The roundoff error bounds imply that the computed results

are as accurate as if computed with twice the working precision and then rounded to the cur-

rent working precision. The running error analysis provides a shaper bound along with the

result, without increasing significantly the computational cost. Numerical experiments illus-

trate that our algorithms run much faster than the algorithms using the classic double–double

library while sharing similar error estimates. Such algorithms can be widely applicable for ex-

ample to compute characteristic polynomials from eigenvalues or polynomial’s coefficients

from zeros. Some simple applications are presented to show that the proposed algorithms

compute the coefficients of the characteristic polynomials of some real and complex matrices

to high relative accuracy.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

kth Elementary Symmetric Function (ESF) associated with a vector of n numbers X = (x1, . . . , xn) is defined as

S(n)
k

(X) =
∑

1≤π1<...<πk≤n

xπ1
xπ2

. . . xπk
, 1 ≤ k ≤ n, (1)
∗ Corresponding author. Tel.: +86 73184574650.

E-mail addresses: haojiang@nudt.edu.cn, jhnudt@163.com (H. Jiang), stef.graillat@upmc.fr (S. Graillat), rbarrio@unizar.es (R. Barrio), canqun@nudt.edu.cn

(C. Yang).
1 Partially supported by National Natural Science Foundation of China (No. 61402495, No. 61303189).
2 Partially supported by the Spanish Research project MTM2012-31883 and by Gobierno de Aragon (group E48) and Fondo Social Europeo.
3 Partially supported by National High Technology Research and Development Program of China (No. 2012AA01A301).

http://dx.doi.org/10.1016/j.amc.2015.08.134

0096-3003/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.amc.2015.08.134
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2015.08.134&domain=pdf
mailto:haojiang@nudt.edu.cn
mailto:jhnudt@163.com
mailto:stef.graillat@upmc.fr
mailto:rbarrio@unizar.es
mailto:canqun@nudt.edu.cn
http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.1016/j.amc.2015.08.134

H. Jiang et al. / Applied Mathematics and Computation 273 (2016) 1160–1178 1161
which consists of
(n

k

)
summands. For k = 0, S

(n)
0

(X) = 1. Throughout this paper, we assume that the inputs X = (x1, . . . , xn) are

real or complex floating-point numbers.

The classic and widely-used method to compute the elementary symmetric function (1) is the so-called summation algorithm

[1], which is essentially the algorithm used by MATLAB’s poly function. The error analysis of this algorithm has been considered

in [2], and the result implies the algorithm is stable. However, as mentioned in [2] “due to cancellation from subtraction”, for

some too ill-conditioned problems, the computed result by the summation algorithm in floating-point arithmetic may be still

little accurate. Then a higher accurate algorithm is required.

In this paper, motivated by the papers [3–10], we propose two fast and accurate compensated algorithms with real and

complex inputs respectively, by introducing error-free transformation (EFT) to the traditional summation algorithm. We focus

mainly on the case 2 ≤ k ≤ n − 1. For k = 1, the problem simplifies to computing a sum of floating-point numbers, and for k = n,

to computing a floating-point product. The corresponding compensated algorithms for these two cases with real floating-point

numbers can be found in [7] and [3], respectively.

As an application, the ESFs appear when expanding a linear factorization of a polynomial

n∏
i=1

(x − xi) =
n∑

i=0

cix
n−i =

n∑
i=0

(− 1)iS(n)
i

(X)xn−i. (2)

With the Summation algorithm, one can evaluate polynomial’s coefficients {ci}n
i=1

from its zeros {xi}n
i=1

(c0 = 1), and specially

can compute characteristic polynomials from eigenvalues (see [2,11,12]). Our algorithms can be used to enhance the accuracy for

some ill-conditioned polynomials’ coefficients evaluation.

The computation of ESFs is also an important part of conditional maximum likelihood estimation (CMLE) of item parameters

under the Rasch model in psychological measurement [13]. It is promising that our algorithm, improving the numerical accuracy,

can allow much more items to be calibrated.

The rest of the paper is organized as follows. In Section 2, we introduce some basic notations and results about floating-point

arithmetic, error-free transformations and the condition number of the problem. After that we recall the summation algorithm,

denoted by SumESF. In Section 3, we first focus on the case of real floating-point inputs. We propose a new compensated sum-

mation algorithm, denoted by CompSumESF, together with an error bound. To obtain a sharper error bound, the correspond-

ing running error analysis is performed. We also present an accurate algorithm using the double–double library, denoted by

DDSumESF, which is used to compare with our compensated algorithm. In Section 4, we extend the results in Section 3 to the

case of complex floating-point inputs. We use the complex error-free transformations to obtain the compensated summation

algorithm in complex floating-point arithmetic and present its error analysis. In Section 5, numerical experiments illustrate the

accuracy and efficiency of our compensated algorithms. Finally, concluding remarks and future work are left for Section 6.

This paper is an extended version of [14] that only dealt with real floating-point inputs. Here the novelty is that we also

consider the accurate and fast evaluation of ESFs in complex floating-point arithmetic. We also performed more performance

tests on different environments. Moreover, we present its well application of computing the characteristic polynomial from

matrix.

2. Notations and preliminaries

2.1. Floating-point arithmetic

In this paper we assume all the floating-point computations are performed in double precision (binary64 in IEEE-754 2008

standard), with “rounding to the nearest” mode and no underflow nor overflow occurring. We also assume that the computations

in floating-point arithmetic follow the model

a op b = f l(a ◦ b) = (a ◦ b)(1 + ε1) = (a ◦ b)/(1 + ε2), (3)

where op ∈ {⊕, �, ⊗}, ◦∈{+,−, ×} and |ε1|, |ε2| ≤ u and fl(·) denotes the result of a floating-point computation, where all

operations inside parentheses are done in floating-point arithmetic. The symbol u is the round-off unit, for IEEE 754 double

precision, u = 2−53, and ‘fl’ represents the floating-point computation, e.g. a ⊕ b = f l(a + b). We denote the computed result

of a∈R in floating-point arithmetic by â or fl(a) and the set of all floating-point numbers by F. Following [15], we also use the

following classic properties in error analysis (we always assume that nu < 1).

1. if |δi| ≤ u, ρi = ±1, then
∏n

i=1 (1 + δi)
ρi = 1 + θn,

2. 1 + θn = <n> and |θn| ≤ γn := nu/(1 − nu),
3. (1 + θk)(1 + θ j) = (1 + θk+ j), <k>< j> = <k + j>,

4. γk + γ j + γkγ j ≤ γk+ j and γk < γk+1.

To derive the running error bound, we need the next relations obtained from [4] and [18].

γk ≤ (1 + u)γ̂k, (1 + u)n|x| ≤ f l
(|x|

1 − (n + 1)u

)
. (4)

1162 H. Jiang et al. / Applied Mathematics and Computation 273 (2016) 1160–1178

Table 1

Error-free transformations of addition and product.

Algorithm Flops Ref.

[x, y] = TwoSum(a, b) 6 [16]

[x, y] = Split(a) 4 [17]

[x, y] = TwoProd(a, b) 17 [17]

[x, y] = FastTwoSum(a, b) 3 [17]

[x, y] = TwoProdFMA(a, b) 2 [7]

[x, y] = TwoSumCplx(a, b) 12 [5]

[p, e, f, g] = TwoProdCplx(a, b) 80 [5]

[p, e, f, g] = TwoProdCplxSingleSplitting(a, b) 64 [5]

[p, e, f, g] = TwoProdFMACplx(a, b) 20 [5]
To carry out error analysis in complex arithmetic, we use the following model from [15]

f l(a ± b) = (a ± b)(1 + δ1), |δ1| < u,

f l(ab) = ab(1 + δ2), |δ2| <
√

2γ2, (5)

with a, b, δ1, δ2 ∈ F + iF, where the absolute value of a complex number x = xr + ixi is defined by |x| =
√

x2
r + x2

i
. For a, b ∈ F + iF,

there are properties

|a + b| ≤ |a| + |b|, |a · b| = |a| · |b|. (6)

We also use the notation γ̃n from [5] with uc =
√

2γ2

γ̃n = nuc

1 − nuc
= n

√
2γ2

1 − n
√

2γ2

. (7)

2.2. Error-free transformations

For a pair of floating-point numbers a, b ∈ F, when no underflow nor overflow occur, there exists a floating-point number

y satisfying a ◦ b = x + y, where x = fl(a ◦ b) and ◦∈{+, −, ×}. The transformation (a, b) −→ (x, y) is regarded as an error-free

transformation. The error-free transformation algorithms of the addition and product of two floating-point numbers used later

in this paper are mainly TwoSum and TwoProd algorithms, respectively. If the relative sizes of the operands of the addition

are known a priori, and the comparison can be avoided, then FastTwoSum may be faster than TwoSum. On some computers

where Fused-Multiply-and-Add (FMA) operator is available, TwoProd can be implemented more efficiently by being rewritten

as TwoProdFMA. We can see the details of the four algorithms above in the references presented in Table 1. Here, algorithm

Split, which can split a floating-point number into two parts, is used in TwoProd.

The following theorem summarizes the properties of algorithm TwoSum and TwoProd.

Theorem 1 (Ogita et al. [7]). For a, b, x, y ∈ F, [x, y] = TwoSum(a, b) verifies

x + y = a + b, x = fl(a + b), y ≤ u|x|, y ≤ u|a + b|;
and for a, b, x, y ∈ F, [x, y] = TwoProd(a, b) verifies

x + y = a × b, x = fl(a × b), y ≤ u|x|, y ≤ u|a × b|.
The complex error-free transformations and corresponding error analysis are presented in [19] and [5] with the theorem

below.

Theorem 2 (Graillat et al. [5]). For a, b, x, y ∈ F + iF, [x, y] = TwoSumCplx(a, b) verifies

x + y = a + b, x = fl(a + b), y ≤ u|x|, y ≤ u|a + b|.
Meanwhile for a, b, p, e, f, g ∈ F + iF, [p, e, f, g] = TwoProdCplx(a, b) verifies

p + e + f + g = a × b, p = fl(a × b), |e + f + g| ≤
√

2γ2|a × b|.
2.3. Condition number

Condition numbers measure the sensitivity of the solution of a problem to perturbation in the data. To perform error analysis,

we define this condition number of the kth ESF evaluation (1) as

cond(S(n)
k

(X)) = lim
ε→0

sup

{ |S(n)
k

(X + �X) − S(n)
k

(X)|
ε|S(n)(X)| : |�X| < ε|X|

}
,

k

H. Jiang et al. / Applied Mathematics and Computation 273 (2016) 1160–1178 1163

Algorithm 1: Summation Algorithm

Input: X = (x1, . . . , xn) and k

Output: k-th ESF S
(n)
k

(X) = S
(n)
k

function S
(n)
k

=SumESF(X, k)

S
(i)
0

= 1, 1 ≤ i ≤ n − 1; S
(i)
j

= 0, j > i; S
(1)
1

= x1;
for i = 2 : n

for j = max{1, i + k − n} : min{i, k}
S
(i)
j

= S
(i−1)
j

+ xiS
(i−1)
j−1

;
end

end
where absolute value and comparison are to be understood componentwise. A direct calculation yields:

cond
(
S(n)

k
(X)

)
= kS(n)

k
(|X|)

|S(n)
k

(X)| . (8)

In particular, cond(S
(n)
n (X)) = cond(

∏n
i=1 xi) = n and cond(S

(n)
1

(X)) = cond(
∑n

i=1 xi) =
∑n

i=1 |xi|
|∑n

i=1 xi| .

It is direct that in complex arithmetic case the definition of condition number is the same.

2.4. Classic algorithm

The summation algorithm, represented by Algorithm 1 below, computes the elementary symmetric functions recursively,

which is the same as the one in [2], except that it only computes the kth ESF rather than all of ESFs.

Here, it is obvious that S
(i)
j

is an abbreviation of

S(i)
j

= S(i)
j
(x1, . . . , xi) =

∑
1≤π1<...<π j≤i

xπ1
xπ2

. . . xπ j
.

If we substitute j = 1 : i for j = max{1, i + k − n} : min{i, k}, we can compute all ESFs simultaneously. For the simplification

of the error analysis, we only consider the computation of the kth ESF. However, in practical calculation such as computing

characteristic polynomial from eigenvalues, this substitution is often required.

The following theorem gives the roundoff error bounds for Algorithm 1.

Theorem 3. If X = (x1, . . . , xn) is a vector of floating-point numbers, the computed kth elementary symmetric function Ŝ
(n)
k

= Ŝ
(n)
k

(X)
by Algorithm 1 in floating-point arithmetic verifies∣∣∣∣ Ŝ(n)

k
−S(n)

k

S(n)
k

∣∣∣∣ ≤ 1
k
γ2(n−1)cond(S(n)

k
), 2 ≤ k ≤ n − 1,∣∣∣∣ Ŝ(n)

1
−S(n)

1

S(n)
1

∣∣∣∣ ≤ γn−1cond(S(n)
1

) = γn−1

∑n
i=1 |xi|

|∑n
i=1 xi| , k = 1,∣∣∣∣ Ŝ(n)

n −S(n)
n

S(n)
n

∣∣∣∣ ≤ 1
n
γn−1cond(S(n)

n) = γn−1, k = n.

Proof. For the cases of k = 1 and k = n, the results directly come from Lemma 8.4 and Lemma 3.1 of [15], respectively. For the

case of 2 ≤ k ≤ n − 1, there are two methods to obtain the error bound. One method is the induction shown in [2]. However

we deem that the error bound of θ
(i1 ...ik)
t in Theorem 4.3 of [2] should be γ2(n−1). Hence, we make a small improvement by

substituting γ2(n−1) for γ 2n. The other one is using data dependency graph just like that in [20], [21] and [22]. It is easy to obtain

the following equation

|Ŝ(i)
j

− S(i)
j
| ≤ γ2(i−1)S

(i)
j
(|x1|, . . . , |xi|), 1 ≤ j ≤ i ≤ n. (9)

Let j = k and i = n, we will obtain the expected result. Finally by definition of the condition number (8), we can obtain the relative

error bound of Algorithm 1. �

Here, we briefly introduce the data dependency graph to show its effectiveness in the error analysis. In Fig. 1, there exists the

following relation:

S(i, j) = V _arr(i, j) × S(i − 1, j) + D_arr(i, j) × S(i − 1, j − 1) + C(i, j), (10)

where S(i, j) is the computed values, the vertical arrows V _arr(i, j) and the diagonal arrows D_arr(i, j) are coefficients, and

C(i; j) is a constant. Taking how to get the error bound of θ
(i1 ...ik)
t in the proof of Theorem 3 as an example. Let S(i, j) = Ŝ

(i)
j

,

1164 H. Jiang et al. / Applied Mathematics and Computation 273 (2016) 1160–1178

D_arr(i,j)

n

n-k

2

1

0

n-1

k

S(i,j)

V_arr(i,j)

n-2

0 k-1 k1

i

j

Fig. 1. Data dependency graph for summation algorithm and Compensated summation algorithm.
V _arr(i, j) = <1>, and C(i, j) = 0 for 1 ≤ j ≤ i ≤ n; D_arr(i, j) = xi<2> for 2 ≤ j ≤ i − 1, 3 ≤ i ≤ n; and D_arr(i, j) = xi<1> for

1 ≤ i = j ≤ k or j = 1, i = 1 : n − k + 1. Based on the data dependency graph, it is easy to obtain that the most perturbation of

Ŝ
(i)
j

is <2(j − 1) + (i − j)>, the bound of which is γ2(i−1) due to j ≤ i.

In the case of complex floating-point inputs, classic SumESF needs no modification but to perform in complex arithmetic. The

error bounds for complex values are derived in [23]. To distinguish these two cases, we denote SumESF in complex floating-point

case by SumESFCplx. Substituting uc for u and γ̃ for γ in (7), we can get its corresponding forward error bounds. Actually, for

k = 1, according to the addition model in (5), we deem that substitution is not necessary.

3. Accurate ESF evaluation

In this section, we focus on the real floating-point arithmetic case. We present a compensated algorithm to compute the ESFs

based on error-free transformations and classic summation algorithm. The result computed by our method is roughly as accurate

as the one computed by the classic summation algorithm using twice the working precision, with a final rounding to the working

precision (see Theorem 4).

3.1. Compensated algorithm

We present hereafter a compensated scheme to evaluate the kth elementary symmetric function.

H. Jiang et al. / Applied Mathematics and Computation 273 (2016) 1160–1178 1165

Algorithm 2: Compensated Summation Algorithm

Input: X = (x1, . . . , xn) and k

Output: k-th ESF S
(n)
k (X) = S

(n)
k

function S
(n)
k =CompSumESF(X, k)

Ŝ
(i)
0

= 1, 1 ≤ i ≤ n − 1; Ŝ
(i)
j

= 0, j > i; Ŝ
(1)
1

= x1;
ε̂S

(i)
j = 0,∀ i, j

for i = 2 : n

for j = max{1, i + k − n} : min{i, k}
[p, β(i)

j
] = TwoProd(xi, Ŝ

(i−1)
j−1

);
[Ŝ

(i)
j

, σ (i)
j

] = TwoSum(Ŝ
(i−1)
j

, p);
ε̂S

(i)
j = ε̂S

(i−1)
j ⊕ (β(i)

j
⊕ σ (i)

j
) ⊕ xi ⊗ ε̂S

(i−1)
j−1

end
end
S
(n)
k = Ŝ

(n)
k

⊕ ε̂S
(n)
k

V

From Algorithm 2 and Theorem 1, it follows that

p + β(i)
j

= xi × Ŝ(i−1)
j−1

and Ŝ(i)
j

+ σ (i)
j

= Ŝ(i−1)
j

+ p, (11)

and then

Ŝ(i)
j

+ (β(i)
j

+ σ (i)
j

) = Ŝ(i−1)
j

+ xi × Ŝ(i−1)
j−1

. (12)

Let εS
(i)
j

be the error between the theoretical result and the computed one, so that

Ŝ(i)
j

+ εS(i)
j

= S(i)
j

, ∀ i, j. (13)

Since

S(i)
j

= S(i−1)
j

+ xi × S(i−1)
j−1

, (14)

and by (12–14), we can deduce that

εS(i)
j

= εS(i−1)
j

+ (β(i)
j

+ σ (i)
j

) + xi × εS(i−1)
j−1

. (15)

Therefore, computing an approximate ε̂S
(n)
k of εS

(n)
k

in the working precision and correcting the original result Ŝ
(n)
k

with it will be

expected to improve the global accuracy. The discussion below exhibits the validation of Algorithm 2.

3.2. Forward error bound

Lemma 1. Let us consider the recurrence (15), with the notation w
(i)
j

= β(i)
j

+ σ (i)
j

and Definition (1). Then, we have

εS(n)
k

=
n∑

i=2

min{i,k}∑
j=max{1,i+k−n}

w(i)
j

S(n−i)
k− j

(xi+1, . . . , xn). (16)

Proof. The proof is direct by induction. We can also obtain the result by drawing data dependency graph like in [20], [21] and

[22]. Considering (15), we deem that the final result εS
(n)
k

of the loop consists of the roundoff errors w
(i)
j

= β(i)
j

+ σ (i)
j

generated

in every step of Algorithm 2. The contribution of w
(i)
j

can be easy to obtain with the data dependency graph. Let S(i, j) = εS
(i)
j

,

_arr(i, j) = 1, D_arr(i, j) = xi and C(i, j) = w
(i)
j

for 1 ≤ j ≤ i ≤ n in (10). We find that there are (
n − i

k − j
) paths from the node (i,

j) to node (n, k), and each path consists of k − j diagonal arrows and (n − i) − (k − j) vertical arrows, hence, we deduce that the

coefficients of w
(i)
j

should be an elementary symmetric function S
(n−i)
k− j

(xi+1 . . . xn). Take into account that w
(1)
j

= 0, we obtain the

expected result (16). �

1166 H. Jiang et al. / Applied Mathematics and Computation 273 (2016) 1160–1178
Lemma 2. For a vector of n floating-point numbers X = (x1, . . . , xn), Algorithm 2 computes the evaluation of εS
(n)
k

defined in

Lemma 1. Then the computed result ε̂S
(n)
k satisfies the following forward error bound,

|εS(n)
k

− ε̂S
(n)

k | ≤ 2u(n − 1)(1 + u)γ2(n−1)(1 + γ2(n−2))S(n)
k

(|X|),
where S

(n)
k

(|X|) = S
(n)
k

(|x1|, . . . , |xn|).

Proof. First, we will present the expression of ε̂S
(i)
j . By Algorithm 2, let ŵ

(i)
j

= β(i)
j

⊕ σ (i)
j

= w
(i)
j

(1 + δ), |δ| < u, we have

ε̂S
(i)

j = ε̂S
(i−1)

j ⊕ ŵ(i)
j

⊕ xi ⊗ ε̂S
(i−1)

j−1 = ŵ(i)
j

<2> + ε̂S
(i−1)

j <2> + xi × ε̂S
(i−1)

j−1 <2>.

And in particular, the initial and boundary values may need some modifications, such as

ε̂S
(i)

1 = ε̂S
(i−1)

1 ⊕ ŵ(i)
1

= ε̂S
(i−1)

1 <1> + ŵ(i)
1

<1>,

ε̂S
(i)

i = ŵ(i)
i

⊕ xi ⊗ ε̂S
(i−1)

i−1 = ŵ(i)
i

<1> + xi × ε̂S
(i−1)

i−1 <2>

with ŵ
(i)
1

= σ (i)
1

and ŵ
(i)
i

= β(i)
i

.

Like in the proof of Lemma 1, we have

ε̂S
(n)

k =
n∑

i=2

min{i,k}∑
j=max{1,i+k−n}

w(i)
j

× S(n−i)
k− j

(xi+1, . . . , xn)(1 + θ(i, j)),

where |θ(i, j)| < γ2(n−1), which can be easily proved by induction and directly obtained with the data dependency graph. Then

we obtain

|εS(n)
k

− ε̂S
(n)

k | ≤ γ2(n−1)

n∑
i=2

min{i,k}∑
j=max{1,i+k−n}

|w(i)
j
| × S(n−i)

k− j
(|xi+1|, . . . , |xn|). (17)

Next, we will obtain the bound of |w(i)
j

|. From Theorem 1, we get

|β(i)
j

| ≤ u|xi × Ŝ(i−1)
j−1

| and |σ (i)
j

| ≤ u|Ŝ(i−1)
j

+ xi ⊗ Ŝ(i−1)
j−1

|,
and then

|w(i)
j
| ≤ |β(i)

j
| + |σ (i)

j
| ≤ 2u(1 + u)(|Ŝ(i−1)

j
| + |xi| × |Ŝ(i−1)

j−1
|). (18)

Taking into account (9), we have

|Ŝ(i−1)
j

| ≤ (1 + γ2(i−2))S(i−1)
j

(|x1|, . . . , |xi−1|),
|Ŝ(i−1)

j−1
| ≤ (1 + γ2(i−2)) × S(i−1)

j−1
(|x1|, . . . , |xi−1|). (19)

Then, considering (18), (19) and

S(i−1)
j

(|x1|, . . . , |xi−1|) + |xi| × S(i−1)
j−1

(|x1|, . . . , |xi−1|) = S(i)
j
(|x1|, . . . , |xi|),

we obtain

|w(i)
j
| ≤ 2u(1 + u)(1 + γ2(n−2))S(i)

j
(|x1|, . . . , |xi|). (20)

Since

min{i,k}∑
j=max{1,i+k−n}

S(i)
j
(|x1|, . . . , |xi|)S(n−i)

k− j
(|xi+1|, . . . , |xn|) = S(n)

k
(|x1|, . . . , |xn|),

then from (17), (20), we can finally deduce the expected result. �

Theorem 4. For a vector of n floating-point numbers X = (x1, . . . , xn), the relative forward error bound in Algorithm 2 satisfies∣∣∣∣S
(n)

k − S(n)
k

S(n)
k

∣∣∣∣ ≤ u + 1

k
γ 2

2(n−1)cond(S(n)
k

(X)),

∣∣∣∣ Ŝ(n)
1

− S(n)
1

S(n)
1

∣∣∣∣ ≤ u + γ 2
n−1cond(S(n)

1
),

H. Jiang et al. / Applied Mathematics and Computation 273 (2016) 1160–1178 1167
∣∣∣∣ Ŝ(n)
n − S(n)

n

S(n)
n

∣∣∣∣ ≤ u + 1

n
γnγ2ncond(S(n)

n),

with 2 ≤ k ≤ n − 1, k = 1, k = n, respectively.

Proof. For 2 ≤ k ≤ n − 1, by Algorithm 2, we have

S
(n)

k = Ŝ(n)
k

⊕ ε̂S
(n)

k = (Ŝ(n)
k

+ ε̂S
(n)

k)(1 + δ) = (Ŝ(n)
k

+ εS(n)
k

− εS(n)
k

+ ε̂S
(n)

k)(1 + δ),

with |δ| < u. Considering Ŝ
(n)
k

+ εS
(n)
k

= S
(n)
k

, we have

|S(n)

k − S(n)
k

| ≤ u|S(n)
k

| + (1 + u)|εS(n)
k

− ε̂S
(n)

k |.
Taking into account that (1 + u)2(1 + γ2(n−2)) ≤ (1 + γ2(n−1)) and 2(n − 1)u(1 + γ2(n−1)) = γ2(n−1), from Lemma 2, we obtain

|S(n)

k − S(n)
k

| ≤ u|S(n)
k

| + γ 2
2(n−1)S

(n)
k

(|X|). (21)

At last the desired bound follows from the definition of condition number (8). For the cases of k = 1 and k = n, the results come

from Proposition 4.5 of [7] and Theorem 2 of [3], respectively. �

3.3. Running error analysis

In practical calculations, it is desirable to obtain a corresponding error bound together with the computed value. The a pri-

ori error bound (21) of Theorem 4 is entirely adequate for theoretical purposes, but lakes sharpness. For this requirement, we

perform a running error analysis of CompSumESF, which provides a sharper and a posteriori error bound. We first provide the

compensated summation algorithm with running error bound, denoted by CompSumESFwErr. Then we prove the efficiency

and rationality of this algorithm with Theorem 5.

Lemma 3. For a vector of n floating-point numbers X = (x1, . . . , xn), εS
(n)
k

is the theoretical result and ε̂S
(n)
k is the corresponding

numerical result in floating-point arithmetic computed by Algorithm 2, then

|εS(n)
k

− ε̂S
(n)

k | ≤ f l(
γ̂2(n−1) ⊗ ÊS

(n)

k

1 − 3nu
) := α̂ (22)

where ÊS
(n)
k is computed with the recurrence relation

ÊS
(i)

j = ÊS
(i−1)

j ⊕ |β(i)
j

⊕ σ (i)
j

| ⊕ |xi| ⊗ ÊS
(i−1)

j−1 (23)

by Algorithm 3 in floating-point arithmetic and 3nu < 1.
Algorithm 3: Compensated Summation Algorithm with running error bound

Input: X = (x1, . . . , xn) and k

Output: k-th ESF S
(n)
k (X) = S

(n)
k and Running Error Bound μ

function [S
(n)
k ,μ]=CompSumESFwErr(X, k)

Ŝ
(i)
0

= 1, 1 ≤ i ≤ n − 1; Ŝ
(i)
j

= 0, j > i; Ŝ
(1)
1

= x1;
ε̂S

(i)
j = 0, ÊS

(i)
j = 0,∀ i, j

for i = 2 : n

for j = max{1, i + k − n} : min{i, k}
[p, β(i)

j
] = TwoProd(xi, Ŝ

(i−1)
j−1

);
[Ŝ

(i)
j

, σ (i)
j

] = TwoSum(Ŝ
(i−1)
j

, p);
ε̂S

(i)
j = ε̂S

(i−1)
j ⊕ (β(i)

j
⊕ σ (i)

j
) ⊕ xi ⊗ ε̂S

(i−1)
j−1

ÊS
(i)
j = ÊS

(i−1)
j ⊕ |β(i)

j
⊕ σ (i)

j
| ⊕ |xi| ⊗ ÊS

(i−1)
j−1

end
end
[S

(n)
k , c] = FastTwoSum(Ŝ

(n)
k

, ε̂S
(n)
k)

α̂ = (γ̂2(n−1) ⊗ ÊS
(n)
k) (1 − 3nu)

μ = (|c| ⊕ α̂) (1 − 2u)

1168 H. Jiang et al. / Applied Mathematics and Computation 273 (2016) 1160–1178
Proof. From (17) in Lemma 2, we have

|εS(n)
k

− ε̂S
(n)

k | ≤ γ2(n−1)ES(n)
k

, (24)

with

ES(n)
k

=
n∑

i=2

min{i,k}∑
j=max{1,i+k−n}

|w(i)
j
|S(n−i)

k− j
(|xi+1|, . . . , |xn|),

where w
(i)
j

= β(i)
j

+ σ (i)
j

. Obviously ES
(n)
k

can be derived from the following recurrence

ES(i)
j

= ES(i−1)
j

+ |β(i)
j

+ σ (i)
j

| + |xi| × ES(i−1)
j−1

with the initial values ES
(i)
j

= 0,∀ i, j.

From (23) and the model (3), we have

ÊS
(i)

j = {[ÊS
(i−1)

j + |β(i)
j

+ σ (i)
j

| 1

1 + δ1

]
1

1 + δ2

+ |xi| × ÊS
(i−1)

j−1

1

1 + δ3

} 1

1 + δ4

,

with |δt| ≤ u, for t = 1, . . . , 4. Then taking into account ÊS
(i)
j ≥ 0, we obtain

(1 + u)3ÊS
(i)

j ≥ ÊS
(i−1)

j + |β(i)
j

+ σ (i)
j

| + |xi| × ÊS
(i−1)

j−1 .

By induction we can prove that

(1 + u)3(n−1)ÊS
(n)

k ≥ ES(n)
k

. (25)

Finally, by the first part in (4) and (25), it follows from (24) that

|εS(n)
k

− ε̂S
(n)

k | ≤ (1 + u)3(n−1)+2ÊS
(n)

k ⊗ γ̂2(n−1).

Using the second relation in (4), we obtain the expected error bound (22). �

Theorem 5. Assume 3nu < 1, then a running error bound of Algorithm 2 is given by

|S(n)

k − S(n)
k

| ≤ f l(
|c| ⊕ α̂

1 − 2u
) := μ, (26)

where α̂ is the error bound defined by (22) in Lemma 3 and c is obtained by [S
(n)
k , c] = FastTwoSum(Ŝ

(n)
k

, ε̂S
(n)
k).

Proof. From Theorem 1, we have S
(n)
k + c = Ŝ

(n)
k

+ ε̂S
(n)
k . Considering S

(n)
k

= Ŝ
(n)
k

+ εS
(n)
k

, we can deduce that

|S(n)

k − S(n)
k

| ≤ |S(n)

k − (Ŝ(n)
k

+ ε̂S
(n)

k)| + |εS(n)
k

− ε̂S
(n)

k | = |c| + α̂ ≤ (1 + u)(|c| ⊕ α̂) ≤ f l(
|c| ⊕ α̂

1 − 2u
).

�

In order to obtain a running relative error bound, when S
(n)
k �= 0, we may deduce by (26) that

|S(n)

k − S(n)
k

|
|S(n)

k
| ≤ μ

|S(n)
k

| ≤ μ

|S(n)

k (1 − μ

S
(n)

k

)|
≤ μ

|S(n)

k |
+ O((

μ

|S(n)

k |
)2). (27)

Other techniques, such as interval arithmetic and basically using rounding upward for all the operations, have been used to

compute a rigorous error bound. Compared with these techniques, our method may provide a more sharper bound together with

the computed result, without requiring the additional significant computational cost.

3.4. Double–double library

It is interesting to compare our compensated algorithm with other approaches to obtain high-precision. A standard way is

by using multiple precision libraries such as ARPREC [24], MP [25], and MPFR [26]. But if we just want to double the IEEE-754

double precision, a more efficient way is to use Bailey’s double–double arithmetic [27]. A double–double number a is the pair

(ah, al) of floating-point numbers with

a = ah + al, |al| < u|ah| and |al| < u|a|. (28)

In the sequel, we present two algorithms to compute the addition of two double–double numbers and a double number times

a double–double number shown in Table 2.

Using internally double–double numbers, we can now propose another accurate algorithm as follows.

H. Jiang et al. / Applied Mathematics and Computation 273 (2016) 1160–1178 1169

Table 2

Addition and multiplication in double–double format.

Algorithm Flops Ref.

[rh, rl] = add_dd_dd(ah, al, bh, bl) 20 [28]

[rh, rl] = prod_dd_d(ah, al, b) 22 [28,29]

[rh, rl] = add_cdd_cdd(ah, al, bh, bl) 40 [27]

[rh, rl] = prod_cdd_cd(ah, al, b) 128 [27]

Algorithm 4: Accurate Summation Algorithm in Double-Double Format

Input: X = (x1, . . . , xn) and k

Output: k-th ESF S
(n)
k

(X) = S
(n)
k

= Sh
(n)
k

function [Sh
(n)
k

, Sl
(n)
k

]=DDSumESF(X, k)

Sh
(i)
0

= 1, 1 ≤ i ≤ n − 1; Sh
(i)
j

= 0, j > i; Sh
(1)
1

= x1;
Sl

(i)
j

= 0,∀ i, j

For i = 2 : n

For j = max (1, i + k − n) : min{i, k}
[rh, rl] = prod_dd_d(Sh

(i−1)
j−1

, Sl
(i−1)
j−1

, xi);
[Sh

(i)
j

, Sl
(i)
j

] = add_dd_dd(rh, rl, Sh
(i−1)
j

, Sl
(i−1)
j

);
end

end
Before studying the accuracy of Algorithm 4 , let us recall the model of double–double arithmetic, the similar results and

proof can be seen in [30].

Remark 1 ([28, p.182]). For a standard model of floating-point arithmetic for the double–double algorithms

f l(a � b) = (a � b)(1 + δ), (29)

where a, b are in double–double format, �∈{+,−, ×, /}, and δ is bounded as follows

|δ| ≤ udd, for � ∈{+,−}; |δ| ≤ 2udd, for � ∈{×, /} (30)

where udd = 2u2 = 2−105 is the roundoff unit in double–double arithmetic.

Theorem 6. The values Ŝh
(n)
k and Ŝl

(n)
k returned by Algorithm 4 in floating-point arithmetic satisfy

|Ŝh
(n)

k − S(n)
k

|
|S(n)

k
| ≤ u + 1

k
(1 + u)γ 3(n−1)cond(S(n)

k
(X)),

where

γ m = mudd

(1 − mudd)
. (31)

Proof. By induction and Remark 1, we can obtain

Ŝh
(n)

k + Ŝl
(n)

k = S(n)
k

+
∑

1≤π1<...<πk≤n

xπ1
xπ2

. . . xπk
θ

(π1 ...πk)

t ,

where |θ(π1 ...πk)

t | ≤ γ 3(n−1). Then considering the property of a double–double number |Ŝl
(n)
k | < u|Ŝh

(n)
k + Ŝl

(n)
k | we have

|Ŝh
(n)

k − S(n)
k

| ≤ |Ŝl
(n)

k | + |Ŝh
(n)

k + Ŝl
(n)

k − S(n)
k

| ≤ u|Ŝh
(n)

k + Ŝl
(n)

k | + γ 3(n−1)S
(n)
k

(|X|)
≤ u|S(n)

k
| + (1 + u)γ 3(n−1)S

(n)
k

(|X|).
Finally, by the definition of condition number we deduce the desired error bound. �

4. In complex arithmetic case

We have already proposed a compensated summation algorithm to evaluate the kth ESF with real floating-point inputs and

given the corresponding error analysis. In this section we will consider the case of complex floating-point inputs.

1170 H. Jiang et al. / Applied Mathematics and Computation 273 (2016) 1160–1178
4.1. CompSumESF in complex version

For the input X = (x1, . . . , xn), xi ∈ F + iF, using complex error-free transformations TwoSumCplx and TwoProdCplx in-

stead of TwoSum and TwoProd in the inner loop of Algorithm 2 (CompSumESF), we will get the compensated summation

algorithm in complex arithmetic case denoted by CompSumESFCplx. Here for error analysis, there is no difference to use either

TwoProdCplxSingleSpliting or TwoProdCplx.

[p, e(i)
j

, f (i)
j

, g(i)
j

] = TwoProdCplx(xi, Ŝ(i−1)
j−1

);
[Ŝ(i)

j
, σ (i)

j
] = TwoSumCplx(Ŝ(i−1)

j
, p);

ŵ(i)
j

= AccSum(e(i)
j

, f (i)
j

, g(i)
j

, σ (i)
j

);

ε̂S
(i)

j = ε̂S
(i−1)

j ⊕ ŵ(i)
j

⊕ xi ⊗ ε̂S
(i−1)

j−1 ; (32)

Thanks to AccSum algorithm in [7], we can compute

w(i)
j

= e(i)
j

+ f (i)
j

+ g(i)
j

+ σ (i)
j

(33)

accurately. Here we stress that AccSum can deal with complex floating-point numbers. According to the property of the AccSum
algorithm, we have

ŵ(i)
j

= w(i)
j
(1 + δ), |δ| < u < uc. (34)

Theorem 7. For a vector of n complex floating-point numbers X = (x1, . . . , xn), the relative forward error bound of

CompSumESFCplx satisfies∣∣∣∣S
(n)

k − S(n)
k

S(n)
k

∣∣∣∣ ≤ u + 1

k
γ̃ 2

2(n−1)cond(S(n)
k

(X)),

∣∣∣∣ Ŝ(n)
1

− S(n)
1

S(n)
1

∣∣∣∣ ≤ u + γ 2
n−1cond(S(n)

1
),

∣∣∣∣ Ŝ(n)
n − S(n)

n

S(n)
n

∣∣∣∣ ≤ u + 1

n
γ̃nγ̃2ncond(S(n)

n),

with 2 ≤ k ≤ n − 1, k = 1, k = n, respectively.

Proof. For 2 ≤ k ≤ n − 1, let

β(i)
j

= e(i)
j

+ f (i)
j

+ g(i)
j

. (35)

From (33) we will have w
(i)
j

= β(i)
j

+ σ (i)
j

. Then from complex error-free transformations Theorem 2 and (32), we will obtain

|β(i)
j

| ≤ uc|xi × Ŝ
(i−1)
j−1

|.
Now, with the properties (6) in complex absolute value, we can perform a straightforward adaptation of the proof of Lemma 2

by substituting uc and γ̃k for u and γ k respectively. Then we obtain the similar result to that of Lemma 2.

Finally, we use the fore part of the proof in Theorem 4, change the second part of the error bound with u < uc. Then with the

condition number in the complex arithmetic case in Section 2.3, we obtain the desired bound.

For the case of k = 1, it is not necessary to use uc, then we deem that the proof can be as the same as that in real arithmetic

case. The proposition 4.2 in [5] used the result in [7] to obtain the error bound. But it will get a sharper error bound to use the

similar proof just like that in [7]. For the case of k = n, the proof is very similar by referring to [3]. �

4.2. CompSumESFwErr in complex version

Next, we will consider the running error bound of CompSumESFCplx and present its implement, denoted by

CompSumESFwErrCplx. We need add

ÊS
(i)

j = ÊS
(i−1)

j ⊕ |ŵ(i)
j
| ⊕ |xi| ⊗ ÊS

(i−1)

j−1 (36)

after (32) and let all of them in the inner loop. We also need modify the tail of CompSumESFwErr with

[S
(n)

k , c] = TwoSumCplx(Ŝ(n)
k

, ε̂S
(n)

k)

α̂c = (̂̃γ 2(n−1) ⊗ ÊS
(n)

k) (1 − (9n − 6)u)

μ = (|c| ⊕ α̂c) (1 − 2u) (37)

H. Jiang et al. / Applied Mathematics and Computation 273 (2016) 1160–1178 1171
Theorem 8. For a vector of n complex floating-point numbers X = (x1, . . . , xn), assume nu � 1, the running error bound of

CompSumESFwErrCplx is given by

|S(n)

k − S(n)
k

| ≤ μ.

where the main parts of CompSumESFwErrCplx consist of (32), (36) and (37).

Proof. Substituting uc and γ̃k for u and γ k, respectively, we will get

|εS(n)
k

− ε̂S
(n)

k | ≤ γ̃2(n−1)ES(n)
k

. (38)

where ES
(n)
k

is as the same as that in Lemma 3 but performed in complex arithmetic. It should be stressed that ÊS
(i)
j in (36) is real

floating-point number. Then considering (35), with the similar proof of Lemma 3 we also can obtain (25).

From uc =
√

2γ2, we have ûc = uc(1 + θ3) and γ 2 < uc < γ 3. Then it is easy to get γ̃k < γ3(k+1). We can deduce that ̂̃γ k =
f l(kûc

1−kûc
) = (1+θ6)kuc

1−(1+θ4)kuc
>

1−γ6
1+γ4γ̃k

γ̃k. Considering that
1−γ6

1+γ4γ̃k
>

1−γ6
1+γ4γ3(k+1)

> 1
1+γ3k+1

for k > 1, then we have γ̃k < (1 + u)3k+2̂̃γ k.

Hence γ̃2(n−1) < (1 + u)6n−4̂̃γ 2(n−1). Then from (38) and (25) we have

|εS(n)
k

− ε̂S
(n)

k | ≤ α̂c (39)

where α̂c is defined in (37).

Finally, from Theorem 2 we can directly adopt the proof in Theorem 5 and obtain the expected result. �

4.3. DDSumESF in complex version

At the end of this section, we will consider the complex double–double format, which is discussed in [27]. If the pair (ah,

al) satisfies ah, al ∈ F + iF and the properties (28), then a = ah + al is a complex double–double number. For a, b in complex

double–double format, the basic arithmetic operation �∈{+, −,×} computed under the standard model (29) satisfy

|δ| ≤ udd, f or � ∈{+,−}; |δ| ≤
√

2γ 4, f or � ∈{×}, (40)

where the bound
√

2γ 4 is similar to (31) but obtained by using 2udd as the unit in (5).

Using the following iterations substituting in the inner loop of the Algorithm 4, we get DDSumESFCplx.

[rh, rl] = prod_cdd_cd(Sh(i−1)
j−1

, Sl(i−1)
j−1

, xi);
[Sh(i)

j
, Sl(i)

j
] = add_cdd_cdd(rh, rl, Sh(i−1)

j
, Sl(i−1)

j
);

where prod_cdd_cd and add_cdd_cdd are shown in Table 2. Then the error bound of DDSumESFCplx satisfies

|Ŝh
(n)

k − S(n)
k

|
|S(n)

k
| ≤ u + 1

k
(1 + u)γ̃ 2(n−1)cond(S(n)

k
(X)), (41)

where γ̃ 2(n−1) = 2(n−1)ucdd
1−2(n−1)ucdd

, with ucdd =
√

2γ 4.

Based on the discussion above we can directly deduce this error bound referring to the proof of Theorem 6.

5. Computing characteristic polynomials from perturbed eigenvalues

In this section, we will discuss the role of high precision summation algorithm, such as CompSumESF, in computing charac-

teristic polynomials from perturbed eigenvalues. The following theorem indicates that, if the relative perturbation bounds are

smaller than the working precision, the roundoff error bound for the coefficients of the polynomial are similar to the perturbation

bounds.

Theorem 9. Let x̃i = xi(1 + εi) be eigenvalues of a matrix whose characteristic polynomial is
∑n

i=0 c̃ix
n−i, c0 = c̃0 = 1 and let εrel =

max1≤i≤n |εi|. Denote by f l[c̃k] the coefficients computed by CompSumESF in floating-point arithmetic from the perturbed eigenvalues

x̃i. if xi, x̃i are real, nεrel < 1, 2 ≤ k ≤ n and ck �= 0, then

| f l[c̃k] − ck|
|ck| ≤ u + 1

k

γ 2
2(n−1)

+ kεrel(1 + u)

1 − kεrel

cond(S(n)
k

(X)) (42)

Proof. First we have the following triangle inequality

| f l[c̃k] − ck|
|c | ≤ | f l[c̃k] − c̃k|

|c | + |c̃k − ck|
|c | . (43)
k k k

1172 H. Jiang et al. / Applied Mathematics and Computation 273 (2016) 1160–1178
Applying the perturbation bound in Theorem 2.13 in [2] to the second summand gives

|c̃k − ck|
|ck| ≤ kεrel

1 − kεrel

S(n)
k

(|X|)
|ck| = εrel

1 − kεrel

cond(S(n)
k

(X)). (44)

To the first summand, from the error bound (21) in Theorem 4, we can deduce

| f l[c̃k] − c̃k| ≤ u|S(n)
k

(X̃)| + γ 2
2(n−1)S

(n)
k

(|X̃|), (45)

where X̃ = (x̃1, . . . , x̃n). Since
||x̃i|−|xi|||xi| ≤ |x̃i−xi||xi| ≤ εrel , from Corollary 2.10 and Corollary 2.11 in [2], we have

|S(n)
k

(X̃)| ≤ |S(n)
k

(X)| + kεrel

1 − kεrel

S(n)
k

(|X|)

S(n)
k

(|X̃|) ≤ S(n)
k

(|X|)
1 − kεrel

. (46)

From (2) we have the relationship between the coefficient and the elementary symmetric function ck = (− 1)kS
(n)
k

(X). Then

by By (43–46) and the definition of condition number (8), we can obtain the expected result (42). �

Theorem 9 implies that it can not be expected to compute accurate coefficients from the ill-conditioned eigenvalues, even

though applying the high precision summation algorithm (such as CompSumESF). For instance, when 1 > kεrel ≥ O(γ2n) ≈
O(2nu), the error bound (42) will be simplified to

| f l[c̃k] − ck|
|ck| ≤ O(εrel)cond(S(n)

k
(X)).

Therefore, the accuracy of the computed coefficients depends strongly on the accuracy of the initial perturbed eigenvalues. Only

when the eigenvalues are not perturbed or accurate enough, such as kεrel ≈ O(γ 2
2n

), the high precision summation algorithm

will show its effectiveness.

The whole conclusion above is based on the assumption that Eq. (44) is not much more pessimistic. However, for instance

when the eigenvalues are clustered or uniformly distributed (in Section 6.3), even though the condition number is large, the

relative perturbation |c̃k − ck|/|ck| is still small in the level of O(εrel). Hence, in this case high precision summation algorithm

will be necessary to compute accurate coefficients.

In the case of complex eigenvalues, we will get the similar results.

6. Numerical test

In this section we present timing and accuracy results. All numerical experiments are performed in IEEE-754 double preci-

sion as working precision. We compare the algorithms in complex floating-point arithmetic (SumESFCplx, CompSumESFCplx,

CompSumESFwErrCplx and DDSumESFCplx) as well as the algorithms SumESF, CompSumESF, CompSumESFwErr and

DDSumESF in real floating-point arithmetic. We also show the compensated summation algorithms in some cases are helpful in

computing characteristic polynomial from matrix.

6.1. Accuracy test

All accuracy measurements are done in MATLAB 7.0. To test the accuracy of our algorithms we need extremely ill-conditioned

elementary symmetric functions, hence we designed GenESF based on GenPoly [29] and GenDot [7]. The basic idea of this

generation algorithm is to construct random vector X with S
(n)
k

(|X|) ≈ cond_exp × |v| and S
(n)
k

(X) ≈ v. We generated the floating-

point vector4 X ∈ F
n with the dimension n from 10 to 30, k being a random integer in the interval [2, n − 1], and the condition

number of computing kth elementary symmetric function varying from 104 to 1033. In this part of numerical tests, the exact

result is obtained by the original summation algorithm using quad-double format [31]. We also assume that the relative errors

greater than 2 be the value 2 just like [7], which means there is no useful information left.

As we can see on Fig. 2, CompSumESF (Algorithm 2) exhibits the expected behavior. When the condition number is smaller

than 1/u, the relative error of CompSumESF is equal to or smaller than u. This relative error degrades to no precision at all for

the condition number between 1/u and 1/u2. Meanwhile, it is shown that CompSumESF and DDSumESF nearly have the same

accuracy. We also present the forward error bound of DDSumESF shown as the dashed line TheoBoundDD. In fact, DDSumESF
may be a little more accurate than CompSumESF, however it is not significant from Fig. 2. It is also shown that the forward error

bound from Theorem 4 is valid, but pessimistic compared with the relative running error bound from CompSumESFwErr, which

is exhibited as the green real line RunErrBound. Besides of DDSumESF, we also compare our algorithm with LejaSumESF,

which uses Leja ordering of the zeros in conjunction with the original summation algorithm (see [11]). However, it does not give

significantly higher accuracy of the results in our numerical tests, partly due to the fact that the inputs are ordered randomly in

the generation algorithm.

H. Jiang et al. / Applied Mathematics and Computation 273 (2016) 1160–1178 1173

10
5

10
10

10
15

10
20

10
25

10
30

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Condition Number

R
el

at
iv

e
F

or
w

ar
d

E
rr

or
γ
2(n−1)

cond/k

u+γ
2(n−1)
2 cond/k

SumESF

CompSumESF

DDSumESF

LejaSumESF

RunErrBound

TheoBoundDD

1/u21/u

Fig. 2. Accuracy of evaluation with respect to the condition number in real floating-point arithmetic.
Similar results for the compared algorithms in complex arithmetic case are shown in Fig. 3. The conclusions are similar to the

real arithmetic case.

6.2. Running time test

All timing tests are done on the following environments.

• Env 1 : Laptop with Intel Pentium Dual CPU E2160, each at 1.8GHz, and with Microsoft Visual C++ 2008 with the default

compiler option /od on Windows 7.

• Env 2 : Personal computer with Intel Core i3-2130 CPU, 2 cores each at 3.4GHz, and with Microsoft Visual C++ 2012 with the

default compiler option /od on Windows 7.

• Env 3 : Node of workstation with Intel Xeon E5-2670 CPU, 8 cores each at 2.60GHz, and with gcc 4.4.6 with the default

compiler option -O0 on x86_64-redhat-linux 4.4.6–4.

When performing the running time tests, we optimize all algorithms in C code by reversing the computing sequence of j to

reduce the required storage location. Similar technique can be seen in [11] and be used in MATLAB’s poly. There are some other

optimizations just like that in [29], such as taking some Split out of the recurrence. Here we do not detail them. We deem that

all the computing time of these algorithms does not depend on the inputs but on the dimension n and the order k. Hence, we

generate the tested random inputs in the interval [−1, 1] (in the case of complex inputs, both the real and imaginary parts are

random floating-point numbers in [−1, 1]).

We perform the tests in two cases. In Case 1, we test timing of the algorithms only computing kth ESF. Then, in Case 2 we test

timing of the modification algorithms computing all ESFs simultaneously, which only change the line of code j = max{1, i + k −
n} : min{i, k} in each algorithm to j = 1 : i. In Case 1, the number n of the inputs varies from 10 to 30 with k from 2 to n − 1; in

Case 2, n varies from 10 to 100.

We exhibit the measured running time ratios in two cases in Tables 3 and 4, respectively. Case 2 corresponds to the application

of computing the coefficients of polynomial from zeros. For simplification, we still denote these algorithms by the same names

as before. In both cases, it seems that CompSumESF is significantly faster than DDSumESF while the results share the same

accuracy, and that the over-cost due to the running error bound supported by CompSumESFwErr is quite reasonable.
4 When n and k are larger, underflow may occur during the generation of some most ill-conditioned ESF.

1174 H. Jiang et al. / Applied Mathematics and Computation 273 (2016) 1160–1178

10
5

10
10

10
15

10
20

10
25

10
30

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
0

Condition Number

R
el

at
iv

e
F

or
w

ar
d

E
rr

or

Forward error bound of
SumESFCplx

Forward error bound of
CompSumESFCplx

SumESFCplx
CompSumESFCplx
DDSumESFCplx
RunErrBound
TheoBoundDD

1/u21/u

Fig. 3. Accuracy of evaluation with respect to the condition number in complex floating-point arithmetic.

Table 3

Time ratios of computing kth ESF with real inputs.

Case 1
CompSumESF

SumESF
DDSumESF
SumESF

CompSumESF
DDSumESF

CompSumESF
CompSumESFwErr

Env 1 3.05 5.42 57.42% 69.91%

Env 2 2.98 5.13 59.06% 72.03%

Env 3 3.51 6.66 52.80% 74.96%

Table 4

Time ratios of computing all ESFs with real inputs.

Case 2
CompSumESF

SumESF
DDSumESF
SumESF

CompSumESF
DDSumESF

CompSumESF
CompSumESFwErr

Env 1 3.91 7.48 52.97% 68.02%

Env 2 4.75 9.67 49.66% 68.23%

Env 3 3.79 7.31 51.95% 70.23%
We also consider the flop counts ratios of the algorithms in Case 2 (there are too many comparison operations in Case 1 to be

suitable for flop counting). The theoretical ratio between CompSumESF and SumESF in the optimized C code is approximately

11.5, which is much larger than the corresponding running time ratios shown in Table 4. Thanks to the analysis in terms of

instruction level parallelism (ILP) (see details in [29,32]), this phenomenon is surprising, but reasonable. Moreover, since the

renormalization steps in DDSumESF may break ILP, the measured running time ratio between CompSumESF and DDSumESF is

usually smaller than the theoretical one (≈ 61%).

As a consequence, it seems that CompSumESF is a fast and accurate algorithm to compute elementary symmetric functions

and can be well used in computing the coefficients of polynomial from zeros.

Similar results for the compared algorithms for complex floating-point inputs are reported in Tables 5 and 6. The conclusions

are similar to the real arithmetic case.

H. Jiang et al. / Applied Mathematics and Computation 273 (2016) 1160–1178 1175

Table 5

Time ratios of computing kth ESF with complex inputs.

Case 1
CompSumESFCplx
SumESFCplx

DDSumESFcplx
SumESFCplx

CompSumESFCplx
DDSumESFCplx

CompSumESFCplx
CompSumESFwErrCplx

Env 1 3.77 7.91 48.82% 72.69%

Env 2 3.68 7.62 49.39% 70.35%

Env 3 4.61 10.20 45.36% 77.76%

Table 6

Time ratios of computing all ESFs with complex inputs.

Case 2
CompSumESFCplx
SumESFCplx

DDSumESFCplx
SumESFCplx

CompSumESFCplx
DDSumESFCplx

CompSumESFCplx
CompSumESFwErrCplx

Env 1 5.42 13.30 41.19% 71.41%

Env 2 6.53 13.88 47.35% 78.89%

Env 3 4.93 11.36 43.44% 75.78%
6.3. Simple application

We consider symmetric indefinite matrices whose eigenvalues are well-conditioned, but the coefficients are ill-conditioned

due to cancelation from subtractions. We choose the n × n matrices J and T presented in the section 5.3 and 5.4 of [2] as example,

where

J = Q
(In/2

−In/2

)
QT

with Q be a random orthogonal matrix, and

T =

⎛
⎜⎜⎜⎝

0 100

100
. . .

. . .

. . . 0 100
100 0

⎞
⎟⎟⎟⎠

be a tridiagonal Toeplitz matrix.

In the numerical tests, we let the tested matrix A = J or T, n = 100, then every other coefficient is zero, that is ck = 0 for k

odd. Hence, we only consider the nozero coefficients computed here. We use the command sym2poly(poly(vpa(A))) in

Symbolic Math Toolbox in Matlab to compute the exact coefficient ck of the characteristic polynomial from the given matrix.

We first compute the eigenvalues with the eig function in floating-point arithmetic and then determines the coefficients using

SumESF or CompSumESF. We compare the accuracies of these two methods. The results are reported in Figs. 4 and 5.

From εrel, we deem that the computed eigenvalues have high relative accuracy. We observe that the relative perturbation

|c̃k − ck|/|ck| denoted by the red real line is so much smaller than the perturbed bound in (44) when the condition numer is large.

That is to say in these cases the perturbed bound is pessimistic. Hence, using higher precision in summation algorithm, such as

CompSumESF, will enhance the accuracy of the coefficient and even keep it in the level of relative perturbation |c̃k − ck|/|ck|,
just shown in Figs. 4 and 5.

We find that for the matrix J, the eigenvalues are near the numbers 1 and -1; and for the matrix T, the eigenvalue

xi = 2ncos jπ
n+1 , a ≤ j ≤ n. In contrast, we generate the eigenvalues by GenCoef with the condition number is 1015. Then the

eigenvalues will have enormous magnitudes. We let these eigenvalues have the perturbation with εrel = 10−14 and obtain the

perturbed eigenvalue x̃i. We observe that the relative perturbation |c̃k − ck|/|ck| is large up to 10−2. In this case, the perturbed

bound (44) is not pessimistic and Theorem 9 predicts the error bound well. Therefore we deem that the distribution of the

eigenvalues can affect the relative perturbation.

The eigenvalues of the two tested matrices above are real numbers. Now we will focus on the Forsythe matrix, the eigenvalues

of which are complex numbers. Then we can show our CompSumESFCplx’s effectiveness. We use F = gallery(’forsythe’,n,α, λ)

in Matlab,with n = 100, α = √
eps and λ = 0, to generate the following Forsythe matrix

F =

⎛
⎜⎜⎜⎝

0 1

. . .
. . .

. . . 0 1
α 0

⎞
⎟⎟⎟⎠

The characteristic polynomial of F is p(t) = tn − α, which means that the coefficients are zero except c100 = −α. Then we compare

the absolute errors of CompSumESFCplx and SumESFCplx. Just like the experiments before, We first compute the eigenvalues

1176 H. Jiang et al. / Applied Mathematics and Computation 273 (2016) 1160–1178

0 10 20 30 40 50 60 70 80 90 100
10

−20

10
−15

10
−10

10
−5

10
0

k

R
el

at
iv

e
F

or
w

ar
d

E
rr

or

SumESF+eig
CompSumESF+eig
Perturbation

0 10 20 30 40 50 60 70 80 90 100
10

0

10
5

10
10

10
15

10
20

k

C
on

di
tio

n
N

um
be

r

Fig. 4. Symmetric indefinite matrix J, with εrel ≈ 2.0 × 10−15.

0 10 20 30 40 50 60 70 80 90 100
10

−20

10
−15

10
−10

10
−5

10
0

k

R
el

at
iv

e
F

or
w

ar
d

E
rr

or

SumESF+eig
CompSumESF+eig
Perturbation

0 10 20 30 40 50 60 70 80 90 100
10

0

10
5

10
10

10
15

10
20

k

C
on

di
tio

n
N

um
be

r

Fig. 5. Symmetric indefinite tridiagonal Toeplitz matrix T with εrel ≈ 2.0 × 10−14.

H. Jiang et al. / Applied Mathematics and Computation 273 (2016) 1160–1178 1177

0 10 20 30 40 50 60 70 80 90 100
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

k

A
bs

ol
ut

e
E

rr
or

SumESFCplx+eig
CompSumESFCplx+eig
Perturbed Bound

Fig. 6. The Forsythe matrix F with εabs ≈ 1.67.
with the eig function in floating-point arithmetic, the largest absolute error of which is εabs ≈ 1.67. Then we determine the

coefficients using SumESFCplx and CompSumESFCplx from these eigenvalues. From Fig. 6, it can be observed that many

coefficients computed by SumESFCplx are not only nonzero but have enormous magnitudes. However, CompSumESFCplx
can give the similar absolute errors as the plot function using symbolic method. It is interesting that SumESFCplx can also

give the high accurate results if we reorder the eigenvalues with the sort instruction in Matlab. We deem that the complex

eigenvalues will introduce more roundoff errors when they are in disorder.

Whatever, CompSumESF and CompSumESFCplx show their effectiveness on computing characteristic polynomial from ma-

trix in some cases.

7. Conclusions

We have presented two compensated summation algorithms for the computation of the elementary symmetric functions

with the real and complex floating-point inputs, respectively. The algorithms yield results as accurate as if computed by the

traditional algorithm in twice the working precision but using standard double precision. We compared these algorithms with

the summation algorithm in double–double format and showed that our algorithms were faster while sharing the same accuracy.

These algorithms also performed well on the application of computing the coefficients of polynomials from zeros and computing

the characteristic polynomial from matrix.

References

[1] G. Fischer, Einführung in die Theorie psychologischer tests: Grundlagen und Anwendungen, Huber, Bern, Switzerland, 1974.

[2] R. Rehman, I. Ipsen, Computing characteristic polynomials from eigenvalues, SIAM J. Matrix. Anal. Applicat. 32 (1) (2011) 90–114.

[3] S. Graillat, Accurate floating-point product and exponentiation, IEEE Trans. Comput. 58 (7) (2009) 994–1000.
[4] S. Graillat, P. Langlois, N. Louvet, Algorithms for accurate, validated and fast polynomial evaluation, Jpn. J. Ind. Appl. Math. 26 (2) (2009) 215–231.

[5] S. Graillat, V. Morain, Accurate summation, dot product and polynomial evaluation in complex floating-point arithmetic, Inf. Comput. 216 (2012) 57–71.
[6] P. Kornerup, C. Lauter, V. Lefèvre, N. Louvet, J. Muller, Computing correctly rounded integer powers in floating-point arithmetic, ACM Trans. Math. Software

37 (1) (2010) 4:1–4:23.
[7] T. Ogita, S.M. Rump, S. Oishi, Accurate sum and dot product, SIAM J. Sci. Comput. 26 (6) (2005) 1955–1988.

[8] S.M. Rump, Ultimately fast accurate summation, SIAM J. Sci. Comput. 31 (5) (2009) 3466–3502.

[9] S.M. Rump, T. Ogita, S. Oishi, Accurate floating-point summation part I: Faithful rounding, SIAM J. Sci. Comput. 31 (1) (2006) 189–224.
[10] S.M. Rump, T. Ogita, S. Oishi, Accurate floating-point summation part II: Sign, k-fold faithful and rounding to nearest, SIAM J. Sci. Comput. 31 (2) (2008)

1269–1302.
[11] D. Calvetti, L. Reichel, On the evaluation of polynomial coefficients, Numer. Algorithms 33 (2003) 153–161.

[12] A. Eisinberg, G. Fedele, A property of the elementary symmetric functions, Calcolo 42 (1) (2005) 31–36.
[13] F. Baker, M. Harwell, Computing elementary symmetric functions and their derivatives: A didactic, Appl. Psychol. Meas. 20 (2) (1996) 169–192.

[14] H. Jiang, S. Graillat, R. Barrio, Accurate and Fast Evaluation of Elementary Symmetric Functions, in: Proceedings of 21st IEEE Symposium on Computer

Arithmetic, IEEE Computer Society, 2013, pp. 183–190.
[15] N. Higham, Accuracy and Stability of Numerical Algorithms, second ed., SIAM, Philadelphia, 2002.

[16] D. Knuth, The art of computer programming: Seminumerical algorithms, 2, third ed., Addison-Wesley, 1998.
[17] T.J. Dekker, A floating-point technique for extending the available precision, Numer. Math 18 (3) (1971) 224–242.

[18] P. Langlois, N. Louvet, How to ensure a faithful polynomial evaluation with the compensated Horner algorithm, in: Proceedings of 18th IEEE Symposium on
Computer Arithmetic, IEEE Computer Society, 2007, pp. 141–149.

http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0001
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0001
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0002
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0002
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0002
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0003
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0003
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0004
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0004
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0004
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0004
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0005
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0005
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0005
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0006
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0006
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0006
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0006
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0006
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0006
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0007
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0007
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0007
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0007
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0008
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0008
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0009
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0009
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0009
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0009
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0010
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0010
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0010
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0010
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0011
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0011
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0011
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0012
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0012
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0012
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0013
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0013
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0013
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0014
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0014
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0014
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0014
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0015
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0015
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0016
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0016
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0017
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0017
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0018
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0018
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0018

1178 H. Jiang et al. / Applied Mathematics and Computation 273 (2016) 1160–1178
[19] S. Graillat, V. Morain, Error-free transformations in real and complex floating-point arithmetic, in: Proceedings of the International Symposium on Nonlinear
Theory and its Applications, 2007, pp. 341–344.

[20] O. Caprani, Roundoff errors in floating-point summation, BIT 15 (1975) 5–9.
[21] H. Jiang, S. Graillat, C.B. Hu, S.G. Li, X.K. Liao, L.Z. Cheng, F. Su, Accurate evaluation of the kth derivative of a polynomial and its application, J. Comput. Appl.

Math. 243 (2013) 28–47.
[22] W. Miller, Graph transformations for roundoff analysis, SIAM J. Comput. 5 (1976) 204–216.

[23] R. Rehman, Numerical computation of the characteristic polynomial of a complex matrix, North Carolina State University, Raleigh, NC, 2010 Phd thesis.

[24] D.H. Bailey, Y. Hida, X.S. Li, B. Thompson, ARPREC: an arbitrary precision computation package, Technical report, Lawrence Berkeley National Laboratory,
2002.

[25] R.P. Brent, A FORTRAN multiple-precision arithmetic package, ACM Trans. Math. Softw. 4 (1) (1978) 57–70.
[26] L. Fousse, G. Hanrot, V. lefèvre, P. Pélissier, P. Zimmermann, MPFR: A Multiple-precision binary floating-point library with correct rounding, ACM Trans.

Math. Softw. 33 (2) (2007) 13:1–13:15.
[27] D.H. Bailey, Library for Double-Double and Quad-Double Arithmetic (QD library), Retrieved from http://crd-legacy.lbl.gov/∼dhbailey/mpdist/, (accessed

26.08.15).
[28] X. Li, J. Demmel, D. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, S. Kang, A. Kapur, M. Martin, et al., Design, implementation and testing of extended and

mixed precision blas, ACM Trans. Math. Softw. 28 (2) (2002) 152–205.

[29] N. Louvet, Compensated algorithms in floating-point arithmetic: accuracy, validation, performances, Université de Perpignan Via Domitia, 2007 Phd thesis.
[30] C. Lauter, Basic building blocks for a triple-double intermediate format, Technical report RR2005-38, LIP, France, 2005.

[31] Y. Hida, X. Li, D.H. Bailey, Algorithms for quad-double precision floating-point arithmetic, in: Proceedings 15th IEEE Symposium on Computer Arithmetic,
IEEE Computer Society, 2001, pp. 155–162.

[32] P. Langlois, N. Louvet, More instruction level parallelism explains the actual efficiency of compensated algorithms, Technical report, hal-00165020, DALI
Research Team, University of Perpignan, France, 2007.

http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0019
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0019
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0019
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0020
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0020
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0021
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0021
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0021
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0021
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0021
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0021
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0021
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0021
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0022
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0022
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0023
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0023
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0024
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0024
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0024
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0024
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0024
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0025
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0025
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0026
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0026
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0026
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0026
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0026
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0026
http://crd-legacy.lbl.gov/~dhbailey/mpdist/
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0027
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0027
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0027
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0027
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0027
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0027
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0027
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0027
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0027
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0027
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0027
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0027
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0028
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0028
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0029
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0029
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0030
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0030
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0030
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0030
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0031
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0031
http://refhub.elsevier.com/S0096-3003(15)01215-1/sbref0031

	Accurate, validated and fast evaluation of elementary symmetric functions and its application
	1 Introduction
	2 Notations and preliminaries
	2.1 Floating-point arithmetic
	2.2 Error-free transformations
	2.3 Condition number
	2.4 Classic algorithm

	3 Accurate ESF evaluation
	3.1 Compensated algorithm
	3.2 Forward error bound
	3.3 Running error analysis
	3.4 Double-double library

	4 In complex arithmetic case
	4.1 CompSumESF in complex version
	4.2 CompSumESFwErr in complex version
	4.3 DDSumESF in complex version

	5 Computing characteristic polynomials from perturbed eigenvalues
	6 Numerical test
	6.1 Accuracy test
	6.2 Running time test
	6.3 Simple application

	7 Conclusions
	 References

