
4

On the Robustness of the 2Sum and Fast2Sum Algorithms

SYLVIE BOLDO, Inria, Université Paris-Saclay, France
STEF GRAILLAT, Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, Paris
JEAN-MICHEL MULLER, CNRS, LIP, Université de Lyon, France

The 2Sum and Fast2Sum algorithms are important building blocks in numerical computing. They are used
(implicitely or explicitely) in many compensated algorithms (such as compensated summation or compensated
polynomial evaluation). They are also used for manipulating floating-point expansions. We show that these
algorithms are much more robust than it is usually believed: The returned result makes sense even when
the rounding function is not round-to-nearest, and they are almost immune to overflow.

CCS Concepts: � Mathematics of computing → Numerical analysis; � Software and its
engineering → Correctness; Software verification and validation;

Additional Key Words and Phrases: Floating-point, error-free transformation, rounding errors, faithful
rounding, 2Sum, Fast2Sum

ACM Reference Format:
Sylvie Boldo, Stef Graillat, and Jean-Michel Muller. 2017. On the robustness of the 2Sum and Fast2Sum
algorithms. ACM Trans. Math. Softw. 44, 1, Article 4 (July 2017), 14 pages.
DOI: http://dx.doi.org/10.1145/3054947

1. MOTIVATIONS

One easily shows that, provided that no overflow occurred, the error of a rounded-to-
nearest floating-point addition or subtraction is exactly representable by a floating-
point number. The 2Sum [Knuth 1998] and Fast2Sum [Dekker 1971] algorithms make
it possible to compute that error, under someconditions that will be noted below. That
error can therefore be used later in a calculation: This is the underlying idea behind
compensated algorithms. This has allowed for the development of various techniques,
such as very accurate (compensated) summation [Kahan 1965; Neumaier 1974; Rump
et al. 2008a, 2008b; Demmel and Nguyen 2013] or dot products, accurate polyno-
mial evaluation [Graillat et al. 2009], efficient manipulation of floating-point expan-
sions [Priest 1991; Shewchuk 1997; Hida et al. 2001] (floating-point expansions rep-
resent real numbers as unevaluated sums of floating-point numbers; algorithms for
adding and multiplying these expansions make much use of 2Sum and Fast2Sum),
and so on. However, these techniques suffer from some limitations:

—As noticed, among others, by Boldo and Daumas [2003], when the rounding function
differs from round-to-nearest, the error of floating-point addition/subtraction may

This work was supported by the FastRelax (ANR-14-CE25-0018-01) project of the French National Agency
for Research (ANR).
Authors’ addresses: S. Boldo, Inria, LRI, CNRS & Univ. Paris-Sud, Université Paris-Saclay, bâtiment 650,
Université Paris-Sud, F-91405 Orsay Cedex, France; email: sylvie.boldo@inria.fr; S. Graillat, Sorbonne Uni-
versités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, 4 place Jussieu, F-75252 Paris Cedex 05, France;
email: stef.graillat@lip6.fr; J.-M. Muller, CNRS, Laboratoire LIP, École Normale Supérieure de Lyon, 46 allée
d’Italie, 69364 Lyon Cédex 07, France; email: jean-michel.muller@ens-lyon.fr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 0098-3500/2017/07-ART4 $15.00
DOI: http://dx.doi.org/10.1145/3054947

ACM Transactions on Mathematical Software, Vol. 44, No. 1, Article 4, Publication date: July 2017.

http://dx.doi.org/10.1145/3054947
http://dx.doi.org/10.1145/3054947

4:2 S. Boldo et al.

not be exactly representable—although this is often the case, see Lemma 2.4 below.
And yet, rounding functions such as round towards ±∞ and round towards zero
(called “directed roundings”) are very useful. They allow one to get certain lower
and/or upper bounds on the exact result of a computation and to easily implement
interval arithmetic or stochastic arithmetic. Also, on many processors, changing the
rounding mode is rather costly (it may require flushing the arithmetic pipeline):
Hence, someone who required directed roundings in previous parts of one’s program
may be reluctant to switch to round-to-nearest before using algorithms 2Sum and
Fast2Sum. Therefore, with directed roundings, even if we cannot always obtain the
“exact” error of floating-point addition, it would still be useful to obtain a value close
to that error. This problem was partly dealt with by Demmel and Nguyen [2013]
and later by Graillat et al. [2015] for the Fast2Sum algorithm and by Martin-Dorel
et al. [2013] in the case of “double roundings.” We aim at tackling this issue in a
more general context, and we wish to study the behaviour of 2Sum and Fast2Sum
just assuming “general” rounding functions (see Definition 2.1 below). There already
exist some kind of error-free transformations for summation with faithful rounding
(see Priest [1992]). But these algorithms are costly, and our work shows that they
are not necessary to achieve a good accuracy in many compensated algorithms: The
simple and well-known Fast2Sum and 2Sum algorithms will frequently suffice.

—In the literature, these algorithms are usually considered as returning a correct
result provided that no underflow or overflow occurs. The case of underflow can be
handled fairly intuitively, using a property mentioned by Hauser [1996]—see below.
The case of overflow is more problematic; the central question is as follows: Can we
have a “spurious” overflow?, that is, can we have situations where the initial addition
does not overflow, and yet one of the arithmetic operations performed in the 2Sum
or Fast2Sum algorithm overflows? We will see in the following that such a situation
almost never arises: This gives more confidence on many compensated algorithms
and on algorithms that use floating-point expansions for “middle-precision” (e.g.,
around 100 digits) computations.

The rest of the article is organized as follows. In Section 2, we introduce some no-
tation, definitions, and preliminary remarks used. The accuracy of Fast2Sum with no
overflow is analyzed in Section 3 while the accuracy of 2Sum is dealt with in Section 4.
Section 5 is devoted to show that Fast2Sum is immune to overflow and Section 6 to
show that 2Sum is almost immune to overflow.

2. NOTATION, DEFINITIONS, AND PRELIMINARY REMARKS

Throughout this article, we assume a radix-2, precision-p, floating-point (FP) arith-
metic of extremal exponents emin and emax. We also assume that subnormal numbers
are available. We denote by � the largest representable floating-point number:

� = (2 − 21−p) · 2emax .

The floating-point predecessor of an FP number x will be noted pred(x). Its successor
will be noted succ(x). If x is a real number, satisfying 2k ≤ |x| < 2k+1, where k is an
integer, then we define ulp(x) as follows:

ulp(x) = 2max(k,emin)−p+1.

When an arithmetic operation τ is performed, with input FP operands a and b,
what is actually computed is ◦(aτb), where ◦ is a rounding function. The IEEE-754
Standard for Floating-point arithmetic defines five rounding functions (round towards
+∞—denoted RU below—, round towards −∞—denoted RD below—, round towards
zero, round to nearest ties to even, and round to nearest ties to infinity). The two

ACM Transactions on Mathematical Software, Vol. 44, No. 1, Article 4, Publication date: July 2017.

On the Robustness of the 2Sum and Fast2Sum Algorithms 4:3

round-to-nearest functions will be denoted RN in the following (the choice of the
tie-breaking rule is not important here). We say that the FP number y is a faithful
rounding of the real number x if y ∈ {RD(x), RU(x)}.

The rounding functions considered in this article satisfy the following definition
(introduced by Kulisch [1971] under the name of optimal rounding).

Definition 2.1 (Rounding Function—“Optimal Rounding” in Kulisch [1971]). Let Fp
be the set of the precision-p binary floating-point numbers. Function ◦ from R to Fp is
a rounding function if

—∀x ∈ Fp, ◦(x) = x;
—∀(x, y) ∈ R

2, x ≤ y ⇒ ◦(x) ≤ ◦(y).

Remark 2.2. If ◦ is a rounding function, then for any x, ◦(x) ∈ {RD(x), RU(x)}, where
RD and RU are the rounds-towards −∞ and round-towards +∞ rounding functions.

The Fast2Sum algorithm was first introduced by Dekker [1971]. It allows one to
compute the error of a (rounded to nearest) floating-point addition. That algorithm is

ALGORITHM 1: Conventional Fast2Sum Algorithm.
s ← RN(a + b)
z ← RN(s − a)
t ← RN(b − z)

The conventional 2Sum algorithm, from Knuth [1998] and [Møller 1965], is

ALGORITHM 2: Conventional 2Sum Algorithm.
(1) s ← RN(a + b)
(2) a′ ← RN(s − b)
(3) b′ ← RN(s − a′)
(4) δa ← RN(a − a′)
(5) δb ← RN(b − b′)
(6) t ← RN(δa + δb)

We know that, in the absence of overflow, if the radix β of the floating-point system
being used is less than or equal to 3, and if the floating-point exponents ea and eb
of a and b satisfy ea ≥ eb, then the values s and t returned by Algorithm 1 satisfy
s + t = a + b, that is, t is the error of the floating-point addition s ← RN(a + b).
Depending on the environment, testing the exponents of a and b may prove difficult.
However, if |a| ≥ |b|, then ea ≥ eb. Algorithm 2 gives the same results as Algorithm 1
but without any requirement on β or on the exponents of a and b: It works in all cases
provided that no overflow occurs. Due to the large penalty of a wrong branch prediction
on modern architectures, if we do not have preliminary information on the respective
orders of magnitude of a and b, calling the 6-operation 2Sum algorithm (Algorithm 2)
is, in general, more efficient than comparing |a| and |b|, swapping them if needed, and
calling the 3-operation algorithm Fast2Sum (Algorithm 1).

Algorithms 1 and 2 allow one to compute the error of a floating-point addition,
provided that this addition was performed using a round-to-nearest rounding function.
The computed error can be re-injected later in a calculation to compensate for it.
This makes these “error-free transformations” very useful. However, when a rounding
function different from round-to-nearest is used, the error of a floating-point addition
is not always equal to a floating-point number. For instance, Muller et al. [2010],

ACM Transactions on Mathematical Software, Vol. 44, No. 1, Article 4, Publication date: July 2017.

4:4 S. Boldo et al.

in a radix-2 and precision-p arithmetic, assume rounding toward −∞, if a = 1 and
b = −2−3p, then

s = RD(a + b) = 0. 111111 · · · 11︸ ︷︷ ︸
p

= 1 − 2−p,

and

a + b − s = 1.1111111111 · · · 11︸ ︷︷ ︸
2p

×2−p−1,

which cannot be exactly represented with precision p (it would require precision 2p).
Therefore, with rounding functions different from RN, it is important to know what

Algorithms 1 and 2 (or, rather, a modified version, with different rounding functions,
of these algorithms) will return, to know if they are still of any use.

This issue was already dealt with by Martin-Dorel et al. [2013] in the restricted case
where the rounding function is round to nearest with a possible “double rounding.”1

Demmel and Nguyen show that if 4ulp(a) ≤ |b| ≤ a, then Algorithm 1 returns the error
of the floating-point addition of a and b when directed rounding functions are used.

Graillat et al. [2015] give an error bound on the value returned by Algorithm 1 when
directed rounding functions are used. We will improve on their bound, showing that
the algorithm always returns the best possible result, namely a floating-point number t
closer to the error of the floating-point addition of a and b than any other floating-point
number. We will perform a similar analysis with the 2Sum algorithm.

There is another issue with these two algorithms. One can rather easily convince
oneself that they are immune to underflow. The main reason for this is that, as shown
by Hauser [1996], if the sum a+b of two floating-point numbers is below the underflow
threshold, then that sum is a floating-point number, which implies that it is computed
exactly, with any rounding function (it can be viewed as a consequence of Lemma 2.4
below). It is, however, much more difficult to know if these algorithms are, at least
for some restricted input domains, immune to overflow. More precisely, if the first
operation (namely the floating-point addition of a and b) does not overflow, can one of
the following operations overflow?

The goal of this article is to deal with these two issues and to show that Fast2Sum
and 2Sum (Algorithms 1 and 2) are much more robust than it is in general believed: For
any combination of rounding functions (we can even have a different rounding function
at each step of the algorithm) they are immune to overflow (except for a very limited
number of “extreme” cases that are easy to detect), and they always produce a very
accurate estimate of the error of the floating-point addition a + b. The algorithms that
we will analyze are the following:

ALGORITHM 3: Fast2Sum With Faithful Roundings: ◦1, ◦2, ◦3 are Rounding Functions (SEE
Definition 2.4).
s ← ◦1(a + b)
z ← ◦2(s − a)
t ← ◦3(b − z)

We will make much use of the following result, due to Sterbenz [1974] (see, for
instance, Hauser [1996] or Muller et al. [2010] for a proof).

1This happens when the result of an operation is first rounded to a wider floating-point format before being
rounded to the destination format.

ACM Transactions on Mathematical Software, Vol. 44, No. 1, Article 4, Publication date: July 2017.

On the Robustness of the 2Sum and Fast2Sum Algorithms 4:5

ALGORITHM 4: 2Sum With Faithful Roundings: ◦i , for i = 1, . . . , 6, are Rounding Functions
(See Definition 2.1).
(1) s ← ◦1(a + b)
(2) a′ ← ◦2(s − b)
(3) b′ ← ◦3(s − a′)
(4) δa ← ◦4(a − a′)
(5) δb ← ◦5(b − b′)
(6) t ← ◦6(δa + δb)

LEMMA 2.3 (STERBENZ). In a radix-β floating-point system with subnormal numbers
available, if x and y are finite floating-point numbers such that

y
2

≤ x ≤ 2y,

then x − y is a floating-point number.

Lemma 2.4 below is common computer arithmetic folklore. We give a proof of it for
the sake of completeness.

LEMMA 2.4. Let a and b be two binary FP numbers of respective exponents ea and eb.
Let s ∈ {RD(a + b), RU(a + b)}. If the exponent es of s is less than or equal to min(ea, eb),
then s = a + b exactly.

PROOF. First, a and b are multiples of 2ea−p+1 and 2eb−p+1, respectively. Since es ≤
min(ea, eb), the number a + b is an integer multiple of 2es−p+1. Hence:

—the largest multiple of 2es−p+1 less than or equal to a + b is a + b itself, and
—the smallest multiple of 2es−p+1 larger than or equal to a + b is a + b itself.

Therefore RD(a + b) = a + b, and RU(a + b) = a + b. Hence s = a + b.

The following lemma allows one to understand the behavior of the first two lines of
Fast2Sum.

LEMMA 2.5. Let a and b be two binary FP numbers, with ea ≥ eb. Let s ∈ {RD(a +
b), RU(a + b)}. The number s − a is a floating-point number (which implies that it will
be computed exactly, with any rounding function).

Notice that Lemma 2.5 only holds in radix 2. With floating-point systems of higher
radices, we can build counter-examples. For instance, in radix 3 with p = 4 and ◦ = RU,
if a = 10023 = 2910 and b = 22223 = 8010, then s = RU(a + b) = 110103 = 11110, so
s − a = 100013 = 8210 is not exactly representable with precision 4.

PROOF. We have a = Ma · 2ea−p+1 and b = Mb · 2eb−p+1, with |Ma|, |Mb| ≤ 2p − 1.
Without loss of generality, we assume Ma ≥ 0. Let Ms and es be the integral significand
and the exponent of s, respectively. Since |s| ≤ 2 max{|a|, |b|}, we have es ≤ ea + 1.

(1) If es = ea + 1, then

Ms ∈
{⌊

Ma

2
+ Mb

21+(ea−eb)

⌋
,

⌈
Ma

2
+ Mb

21+(ea−eb)

⌉}
. (1)

Defining μ = 2Ms − Ma, from Equation (1), we obtain

Mb

2ea−eb
− 2 < μ <

Mb

2ea−eb
+ 2,

ACM Transactions on Mathematical Software, Vol. 44, No. 1, Article 4, Publication date: July 2017.

4:6 S. Boldo et al.

which implies |μ| ≤ |Mb| + 1 ≤ 2p. An immediate consequence is that s − a =
μ · 2ea−p+1 is a floating-point number.

(2) If es ≤ ea, then first notice that if es ≤ eb, then s = a + b exactly by Lemma 2.4 so
s − a = b is a floating-point number. Therefore, we need only to focus on the case
es > eb. In that case,

s ∈
{⌊

2ea−es Ma + 2eb−es Mb
⌋ · 2es−p+1,

⌈
2ea−es Ma + 2eb−es Mb

⌉ · 2es−p+1
}

;

so (
2eb−es Mb − 1

) · 2es−p+1 < s − a <
(
2eb−es Mb + 1

) · 2es−p+1.

Hence |s − a| is of the form K · 2es−p+1, with

|K| ≤ |Mb|
2

+ 1 < 2p,

which implies that it is a floating-point number.

The following lemma shows that even when the rounding function is not round-to-
nearest, the error of a floating-point addition will very frequently be exactly repre-
sentable by a floating-point number.

LEMMA 2.6. Let a and b be binary, precision-p, floating-point numbers. Let s ∈ {RD(a+
b), RU(a+ b)}. If the difference |ea − eb| of the exponents of a and b does not exceed p− 1,
then s − (a + b) is a binary, precision-p, floating-point number.

PROOF. Without loss of generality, we assume |a| ≥ |b|, and ea − eb ≤ p − 1. The
numbers a and b are multiple of 2eb−p+1, therefore a + b and s are multiple of 2eb−p+1

too. Therefore, there exists an integer Z such that

(a + b) − s = Z · 2eb−p+1. (2)

Let es be the FP exponent of s. Since |s− (a+b)| < ulp(s), we have |(a+b)− s| < 2es−p+1.
Since |b| ≤ |a|, we have |s| ≤ 2|a|, which implies es ≤ ea + 1. Therefore,

|(a + b) − s| < 2ea−p+2 ≤ 2eb+1. (3)

By combining Equations (2) and (3), we deduce that |Z| ≤ 2p−1, and therefore (a+b)−s
is a FP number.

3. ACCURACY OF FAST2SUM IN THE ABSENCE OF OVERFLOW

Let us first deal withthe Fast2Sum algorithm with arbitrary rounding functions (Algo-
rithm 3).

THEOREM 3.1. If no overflow occurs, and ea ≥ eb, then the values s and t returned by
Algorithm 3 satisfy

t = ◦3((a + b) − s),

that is, t is a faithful rounding of the error of the FP addition s ← ◦1(a + b).

Notice that if we combine this theorem with Lemma 2.6, we deduce that if the
difference of the exponents of a and b does not exceed p − 1 (which will occur in many
practical cases), then t is exactly (a + b) − s.

PROOF. Lemma 2.5 above implies that s−a is a floating-point number. Hence, z = s−a,
so

t = ◦3(b − z) = ◦3((a + b) − s).

ACM Transactions on Mathematical Software, Vol. 44, No. 1, Article 4, Publication date: July 2017.

On the Robustness of the 2Sum and Fast2Sum Algorithms 4:7

Fig. 1. Various cases discussed in the proof.

4. ACCURACY OF 2SUM IN THE ABSENCE OF OVERFLOW

We now consider the 2Sum algorithm with arbitrary rounding functions (Algorithm 4).
Contrarily to what happens in the previous section with Algorithm 3, we do not always
obtain a final value t equal to a faithful rounding of (a + b) − s. Consider the following
example, in binary32/single-precision arithmetic (p = 24):

—a = 3076485 · 2−21, b = −6130317 · 2−49;
—◦1 = ◦2 = ◦5 = RU, ◦3 = ◦4 = ◦6 = RD.

We successively obtain

s = a = 3076485 · 2−21;
a′ = 12305941 · 2−23;
b′ = −2−23;
δa = −2−23;
δb = 15244637 · 2−47;
t = −1532579 · 2−47,

and, since (a + b) − s = b is a floating-point number, with any rounding function ◦,
◦((a + b) − s) = b differs from t. However, (a + b − s) − t = −2−49, so t remains a very
good approximation to (a + b) − s. As we are going to see, this is always true. More
precisely, we prove together the following two results. The first one (Theorem 4.1) is
the main result of this section. The second one (Lemma 4.2) is needed in the proof of
Theorem 6.2.

THEOREM 4.1. If p ≥ 4 and no overflow occurs, then the values s and t returned by
Algorithm 3 satisfy

t = (a + b) − s + α,

with |α| < 2−p+1 ·ulp(a+b) ≤ 2−p+1 ·ulp(s). Furthermore, if the floating-point exponents
es and eb of s and b satisfy es − eb ≤ p − 1, then t is a faithful rounding of (a + b) − s.

LEMMA 4.2. If p ≥ 4 and no overflow occurs in lines (1) to (5) of Algorithm 4, then the
variables δa and δb computed at lines (4) and (5) satisfy

|δa + δb| ≤ ulp(a + b).

PROOF. We prove together Theorem 4.1 and Lemma 4.2. This means the case split
and intermediate results are the same, but they do not rely on one another. Without loss
of generality, we assume a ≥ 0. Figure 1 illustrates the various cases that are discussed
in the proof. Case 1 (|b| ≥ a) just uses Theorem 3.1 (we can exhibit Algorithm 3, hidden
in the lines of Algorithm 4). Case 2 (|b| < a and |s| ≤ |b|) is a simple application of
Sterbenz’ Lemma (Lemma 2.3), and Case 3 (|b| < a and |s| > |b|) requires more effort.
Notice that in Cases 1 and 2, t will always be a faithful rounding of a + b − s. Hence,

ACM Transactions on Mathematical Software, Vol. 44, No. 1, Article 4, Publication date: July 2017.

4:8 S. Boldo et al.

the part in the theorem that is specific to the case es − eb ≤ p − 1 does not need to be
addressed in these first two cases.

Case 1 – If |b| ≥ a, then lines (1), (2), and (4) of Algorithm 4 are equivalent to
Fast2Sum(b,a). Therefore, from Theorem 3.1, we have a′ = s − b and δa = ◦4(a + b − s),
hence |δa| ≤ ulp(a + b). An immediate consequence of a′ = s − b is b′ = b and δb = 0.
From this, we find

t = ◦4(a + b − s),

which proves the result of Theorem 4.1, and |δa + δb| ≤ ulp(a + b), so the result of
Lemma 4.2 holds.

Case 2 – If |b| < a and |s| ≤ |b| (which is equivalent to saying that −a < b ≤ −a/2),
then by Sterbenz Lemma, s = a + b. An immediate consequence is a′ = a, b′ = b,
δa = δb = 0 (so, obviously, the result of Lemma 4.2 holds), t = 0. Hence t = (a + b) − s
(so the result of Theorem 4.1 holds).

Case 3 – If |b| < a and |s| > |b| (which is equivalent to saying that −a/2 < b < a),
notice that we have s > 0. Let u = 21−p (i.e., u is the rounding unit for directed
roundings). We have

s = (a + b) · (1 + ε1); with|ε1| ≤ u;
a′ = (s − b) · (1 + ε2); with|ε2| ≤ u.

Thus a′ = (a + aε1 + bε1) · (1 + ε2). Since |b| < a, aε1 + bε1 can be written 2aε3, with
|ε3| ≤ u. Therefore

a′ = a · (1 + η),

with |η| ≤ 3u + 2u2. As soon as p ≥ 4, we have |η| < 1/2, so a′ ≥ 0 and a/2 ≤ a′ ≤ 2a.
Therefore, Sterbenz Lemma applies to line (4) of Algorithm 4, and

δa = a − a′. (4)

Also, since s > |b|, lines (2) and (3) of Algorithm 4 are equivalent to the first two lines
of Fast2Sum(s,−b), so

b′ = s − a′ (5)

and

δb = ◦5(a′ − (s − b)). (6)

Notice that, from Lemma 2.6, as soon as the exponents es and eb of s and b satisfy
es −eb ≤ p−1, Equation (6) implies δb = a′ − (s−b), which, combined with Equation (4),
gives t = ◦6(a + b − s), so Theorem 4.1 holds. Also, in that case, δa + δb = (a + b) − s, so
Lemma 4.2 holds. Hence, let us now assume that es − eb ≥ p. Notice that this implies

|b| < 2eb+1 ≤ 2es−p+1 = ulp(s).

Hence,

a′ ∈ {succ(s), s, pred(s), pred(pred(s))}.
Notice that the case a′ = pred(pred(s)) can occur only when s is a power of 2, as seen in
Figures 2 and 3.

(1) If a′ = s, then b′ = 0. It follows that δb = b and δa = a − s, for which we deduce
t = ◦6(δa + δb) = ◦6(a + b − s), so Theorem 4.1 holds, and |δa + δb| = |a + b − s| <
ulp(a + b), so Lemma 4.2 holds.

(2) If a′ �= s, then

a′ = s − σ · ulp(s), with σ ∈ {−1, 1/2, 1},

ACM Transactions on Mathematical Software, Vol. 44, No. 1, Article 4, Publication date: July 2017.

On the Robustness of the 2Sum and Fast2Sum Algorithms 4:9

Fig. 2. General case: s is not a power of 2.

Fig. 3. Special case: s is a power of 2.

(the case σ = 1/2 can occur only when s is a power of 2), and we have

b′ = σ · ulp(s)
δa = a − s + σ · ulp(s)
δb = ◦5(b − σ · ulp(s)).

We know that |b| < ulp(s). Furthermore, b has the same sign as σ . Therefore
—either |b| ≥ |σ |/2 ·ulp(s), in which case Sterbenz Lemma implies δb = b−σ ·ulp(s),

so δa + δb = a + b − s. This has two consequences: First, |δa + δb| = |a + b − s| <
ulp(a + b), so Lemma 4.2 holds, and, second, t = ◦6(a + b − s), and therefore
Theorem 4.1 holds;

—or |b| < |σ |/2 · ulp(s), in which case

|b − σ · ulp(s)| < |σ | · ulp(s)

(unless b = 0 but that case is straightforwardly handled), so (since |σ | · ulp(s) is
a power of 2)

|δb − (b − σ · ulp(s))| <
|σ |
2

ulp(ulp(s)) = |σ | · 2−pulp(s)

(since ulp(s) is a power of 2). An immediate consequence is

|(δa + δb) − (a + b − s)| < |σ | · 2−pulp(s). (7)

Since we already know that |(a + b) − s| < ulp(a + b), we deduce

|δa + δb| < ulp(a + b) + |σ | · 2−pulp(s). (8)

Let us try to slightly improve on the bound (8). First, from |b| ≤ ulp(s), one easily
deduces a > s/2 (otherwise, we would have a + b ≤ s/2 + ulp(s), which would

ACM Transactions on Mathematical Software, Vol. 44, No. 1, Article 4, Publication date: July 2017.

4:10 S. Boldo et al.

Fig. 4. Last case: s is a power of 2, a + b < s, and σ = −1.

imply s = ◦1(a + b) ≤ ◦1(s/2 + ulp(s)) = s/2 + ulp(s)). Hence δa is a multiple of
1
2 ulp(s). Also, ulp(a + b) is equal to ulp(s) or 1

2 ulp(s).
Finally, |b| < |σ |/2 · ulp(s) and b′ = σ · ulp(s) imply |b − b′| >

|σ |
2 ulp(s), so |δb| ≥

|σ |
2 ulp(s), which implies that δb is a multiple of |σ | · 2−pulp(s). All this implies that

δa + δb is a multiple of |σ | · 2−pulp(s). Hence, from Equation (8), we deduce

|δa + δb| ≤ ulp(a + b).

First, this proves Lemma 4.2. Furthermore, since ulp(a + b) is a power of 2, we
obtain

| ◦6 (δa + δb) − (δa + δb)| ≤ 1
2

ulp(ulp(a + b)) = 2−pulp(a + b).

Combined with Equation (7), this gives

|t − (a + b − s)| < 2−p · (ulp(a + b) + |σ | · ulp(s)). (9)

This already gives |t − (a+b− s)| < 2−p+1 ·ulp(s). Let us now try to express a bound
on |t − (a + b − s)| as a function of ulp(a + b) only. We have four cases to consider
(a) if s is not a power of 2, or if a + b ≥ s, then ulp(a + b) = ulp(s), which gives

|t − (a + b − s)| < 2−p+1 · ulp(a + b), so Theorem 4.1 holds;
(b) if s is a power of 2 and a + b < s and σ = 1/2, then ulp(a + b) = 1/2 · ulp(s), and

Equation (9) implies |t − (a + b − s)| < 2−p+1 · ulp(a + b), so Theorem 4.1 holds;
(c) the case when s is a power of 2, a + b < s, and σ = 1 is impossible: We assumed

|b| < |σ |/2 · ulp(s) = 1/2 · ulp(s), which implies s − b ≥ s − 1/2 · ulp(s) =
pred(s), which implies a′ = ◦2(s − b) ≥ pred(s), which is not compatible with the
assumption σ = 1, since a′ = s − σulp(s);

(d) if s is a power of 2, a + b < s, and σ = −1, then we have the following relations
(see Figure 4): a′ = succ(s) = s + ulp(s), b′ = −ulp(s), and −1/2 · ulp(s) <

b < 0. We deduce that a > pred(s) = s − 1
2 ulp(s) (otherwise, we would have

a + b < pred(s), which would imply s = ◦1(a + b) ≤ pred(s)). Similarly, we have
a < succ(s) = s+ulp(s) (otherwise, we would have a+b ≥ succ(s)− 1

2 ulp(s) > s).
Therefore a = s, from which we immediately deduce δa = −ulp(s) and δb =
◦5(b + ulp(s)). Now, δa and δb have opposite signs, and

1
2

ulp(s) < b + ulp(s) < ulp(s),

(notice that since ulp(s) is a power of 2, this implies ulp(b+ ulp(s)) ≤ 2−pulp(s))
from which we deduce

|δa|
2

= 1
2

ulp(s) ≤ ◦5(b + ulp(s)) = δb ≤ |δa| = ulp(s),

ACM Transactions on Mathematical Software, Vol. 44, No. 1, Article 4, Publication date: July 2017.

On the Robustness of the 2Sum and Fast2Sum Algorithms 4:11

hence we can apply Sterbenz lemma to the addition of δa and δb, which gives

t = ◦6(δa + δb) = δa + δb
= −ulp(s) + ◦5(b + ulp(s))
= b + η
= a + b − s + η,

(since a = s), with |η| < ulp(b + ulp(s)) ≤ 2−p · ulp(s) = 2−p+1ulp(a + b), hence
Theorem 4.1 holds.

5. FAST2SUM IS IMMUNE TO OVERFLOW

Let us now consider Algorithm 3, with ea ≥ eb, where ea and eb are the floating-point
exponents of a and b, and let us assume that no overflow occurred in the first line
(s ← ◦1(a + b)). Without loss of generality, we can assume a > 0. Let us first deal with
the second line of the algorithm (z ← ◦2(s − a)).

We have s = a + b+ ε, with |ε| < ulp(a + b) ≤ 2ulp(a). Hence s − a = b+ ε. Therefore,
if the computation of z = ◦2(s − a) overflows, it means that either b < −� + 2ulp(a) or
b > � − 2ulp(a).

The second case is impossible: If b > � − 2ulp(a) ≥ � − 2ulp(�), then (since ea ≥ eb,
which here implies ea = eb = emax) a + b ≥ � − 2ulp(�) + 2emax = 3 · 2emax − 3 · 2emax−p+1,
which implies that a + b overflows. Let us consider the first case. In that case, we have
b < −� + 2ulp(a) ≤ −� + 2ulp(�) and (since ea ≥ eb which implies here ea = emax),
�/2 < 2emax ≤ a ≤ �), in the first operation we are in the conditions of Sterbenz Lemma,
so s = a + b, which implies z = b: In that case the computation of z does not overflow.

Hence, in all cases, the second line of Algorithm 3 cannot overflow. Let us now
deal with the last line (t ← ◦3(b − z)). We know from Lemma 2.5 that z = s − a, so
b − z = a + b − s. The computation of t can overflow only if |b − z| > �, but this is
impossible since

|b − z| = |(a + b) − s| < ulp(s) < |s|.
We immediately deduce

THEOREM 5.1. Assume that we perform Algorithm 3 with input values a and b whose
exponents satisfy ea ≥ eb. If the computation of s (first line of the algorithm) does not
overflow, then the other lines of the algorithm cannot overflow.

6. 2SUM IS ALMOST IMMUNE TO OVERFLOW

The overflow analysis of Algorithm 4 will be significantly more difficult. Our main
result is Theorem 6.2 below. To make its proof simpler, we first prove the following
result.

LEMMA 6.1. If there are no overflows at lines (1) to (5) of Algorithm 4, then there
cannot be an overflow at line (6).

PROOF. From Lemma 4.2, we know that |δa+δb| ≤ ulp(a+b). Since no overflow occurs
at line (1), a+b is in the representable range, so ulp(a+b) ≤ 2−p+1|a+b| is much below
the overflow threshold. Hence line (6) of Algorithm 4 (namely, t ← ◦6(δa + δb)) cannot
overflow.

THEOREM 6.2. If the first input value a of Algorithm 4 satisfies |a| < � and if there is
no overflow at line (1) of the algorithm, then there will be no overflow at lines (2) to (6).

PROOF. Without loss of generality, we assume a > 0 and b �= 0. Assume that no
overflow occurred in the first line (s ← ◦1(a + b)).

ACM Transactions on Mathematical Software, Vol. 44, No. 1, Article 4, Publication date: July 2017.

4:12 S. Boldo et al.

(1) If b > 0
The monotonicity of the rounding functions implies the following: (i) s ≥ b, so
a′ ≥ ◦2(0) = 0, and (ii) a′ ≤ ◦2(s) = s. Therefore

0 ≤ a′ ≤ s, (10)

which implies that there is no overflow at line (2) of the algorithm. Now, Equa-
tion (10) implies 0 ≤ s − a′ ≤ s, so

0 ≤ b′ ≤ s. (11)

As a consequence, there is no overflow at line (3) of the algorithm.
Now, since a > 0 and a′ ≥ 0, we deduce |a − a′| ≤ max{a, a′}, and hence line (4)
cannot overflow.
Similarly, since b > 0 and b′ ≥ 0, we obtain |b − b′| ≤ max{b, b′}, and hence line (5)
cannot overflow.
Lemma 6.1 implies that line (6) cannot overflow.

(2) If b < 0
Notice that there cannot be an overflow at line (1): |a + b| (hence |s|) is less than or
equal to max{|a|, |b|}.
(a) if −b < a, then a + b − ulp(a + b) < s < a + b + ulp(a + b), so

a + b − ulp(a) < s < a + b + ulp(a) (12)

(since |a + b| < a, which implies ulp(a + b) ≤ ulp(a)). We therefore deduce

a − ulp(a) < s − b < a + ulp(a).

Therefore, unless a = �, there will be no overflow at line (2) of the algorithm,
and a′ = ◦2(s − b) will satisfy

a − ulp(a) ≤ a′ ≤ a + ulp(a). (13)

(this is deduced using the monotonicity of the rounding function ◦2 and the fact
that a−ulp(a) and a+ulp(a) are floating-point numbers). We now assume a �= �
(which, with our assumption −b < a, implies −b < pred(�)), that is, since b is
a floating-point number,

|b| = −b ≤ pred(pred(�)). (14)

From Equations (12) and (13), we find

b − 2ulp(a) < s − a′ < b + 2ulp(a), (15)

This, along with Equation (14) and ulp(a) ≤ ulp(�) implies that line (3) of the
algorithm cannot overflow. Notice that 0 < −b < a implies

|b ± 2ulp(a)| < a + 2ulp(a). (16)

It also implies that a cannot be the smallest nonzero subnormal floating-point
number 2emin−p+1. Hence a ≥ 2emin−p+2, so a ≥ 2ulp(a). This and Equation (16)
give |b ± 2ulp(a)| ≤ 2a so ulp(b ± 2ulp(a)) ≤ 2ulp(a). Combined with Equa-
tion (15), this gives

b − 4ulp(a) ≤ b′ ≤ b + 4ulp(a). (17)

Now, from Equations (13) and (17), we deduce |a − a′| ≤ ulp(a) and |b − b′| ≤
4ulp(a), so lines (4) and (5) of the algorithm cannot overflow. Lemma 6.1 implies
that line (6) cannot overflow.

ACM Transactions on Mathematical Software, Vol. 44, No. 1, Article 4, Publication date: July 2017.

On the Robustness of the 2Sum and Fast2Sum Algorithms 4:13

(b) if −b ≥ a. First, notice that the case a ≥ −b/2 is easily handled, since Sterbenz
Lemma applied to line (1) of Algorithm 4 implies s = a + b, so a = a′, b = b′,
and δa = δb = t = 0. Hence we only need to focus on the case a < −b/2.
From 0 ≤ a < −b/2, we deduce b ≤ a + b < b/2, which implies2

b ≤ s ≤ b/2. (18)

The consequence of Equation (18) is twofold. First, we immediately deduce
0 ≤ s − b ≤ −b/2, so line (2) of Algorithm 4 cannot overflow, and, second, the
Sterbenz Lemma can be applied to line (2) of Algorithm 4, so a′ = s − b. It
follows that b′ = b and line (3) cannot overflow. Therefore a − a′ = a + b − s, so
|a−a′| < ulp(a+b), hence line (4) cannot overflow. We finally have δb = b−b′ = 0
and t = δa: Lines (5) and (6) cannot overflow.

Notice that condition |a| < � is necessary. Assume all rounding functions are RN
(with ties-to-even tie-breaking rule). The choice a = � and b = −(3/2) · ulp(�) will give
no overflow at line (1) and an overflow at line (2).

Conclusion

We have shown that, in binary floating-point arithmetic, the 2Sum and Fast2Sum
algorithms are more “robust” than it is usually believed: Even when the error of the
initial floating-point addition is not exactly representable, they return a very good
approximation to that error. Also, they are almost totally immune to overflow: The only
case where a “spurious” overflow may occur is with 2Sum, when the absolute value of
operand a is equal to the largest floating-point number.

ACKNOWLEDGMENT

We are very grateful to the anonymous referees for the detailed and very helpful review of our article.

REFERENCES

S. Boldo and M. Daumas. 2003. Representable correcting terms for possibly underflowing floating point
operations. In Proceedings of the 16th Symposium on Computer Arithmetic, J.-C. Bajard and M. Schulte
(Eds.). IEEE Computer Society Press, Los Alamitos, CA, 79–86.

T. J. Dekker. 1971. A floating-point technique for extending the available precision. Numer. Math. 18, 3
(1971), 224–242.

J. Demmel and H. D. Nguyen. 2013. Fast reproducible floating-point summation. In Proceedings of the 21st
IEEE Symposium on Computer Arithmetic. 163–172.

S. Graillat, F. Jzquel, and R. Picot. 2015. Numerical validation of compensated summation algorithms
with stochastic arithmetic. Electr. Not. Theor. Comput. Sci. 317 (2015), 55–69. DOI:http://dx.doi.
org/10.1016/j.entcs.2015.10.007. The Seventh and Eighth International Workshops on Numerical Soft-
ware Verification (NSV).

S. Graillat, P. Langlois, and N. Louvet. 2009. Algorithms for accurate, validated and fast computations with
polynomials. Jpn. J. Industr. Appl. Math. 26, 2 (2009), 215–231.

J. R. Hauser. 1996. Handling floating-point exceptions in numeric programs. ACM Trans. Program. Lang.
Syst. 18, 2 (1996), 139–174. DOI:http://dx.doi.org/10.1145/227699.227701

Y. Hida, X. S. Li, and D. H. Bailey. 2001. Algorithms for quad-double precision floating-point arithmetic.
In Proceedings of the 15th IEEE Symposium on Computer Arithmetic (ARITH’16), N. Burgess and
L. Ciminiera (Eds.). 155–162. DOI:http://dx.doi.org/10.1109/ARITH.2001.930115

W. Kahan. 1965. Pracniques: Further remarks on reducing truncation errors. Commun. ACM 8, 1 (1965), 40.
DOI:http://dx.doi.org/10.1145/363707.363723

D. Knuth. 1998. The Art of Computer Programming (3rd ed.). Vol. 2. Addison-Wesley, Reading, MA.
U. W. Kulisch. 1971. An axiomatic approach to rounded computations. Numer. Math. 19 (1971), 1–17.

2Unless b/2 is not a floating-point number: this can happen only of b is subnormal, and in that case, with
0 ≤ a < −b/2, overflow is of course impossible.

ACM Transactions on Mathematical Software, Vol. 44, No. 1, Article 4, Publication date: July 2017.

http://dx.doi.org/10.1016/j.entcs.2015.10.007
http://dx.doi.org/10.1016/j.entcs.2015.10.007
http://dx.doi.org/10.1145/227699.227701
http://dx.doi.org/10.1109/ARITH.2001.930115
http://dx.doi.org/10.1145/363707.363723

4:14 S. Boldo et al.

Martin Dorel, G. Melquiond, and J.-M. Muller. 2013. Some issues related to double rounding. BIT Numer.
Math. 53, 4 (2013), 897–924. DOI:http://dx.doi.org/10.1007/s10543-013-0436-2

O. Møller. 1965. Quasi double-precision in floating-point addition. BIT 5 (1965), 37–50.
J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé,

and S. Torres. 2010. Handbook of Floating-Point Arithmetic. Birkhäuser, Boston.
A. Neumaier. 1974. Rundungsfehleranalyse einiger verfahren zur summation endlicher summen. ZAMM 54

(1974), 39–51.
D. M. Priest. 1991. Algorithms for arbitrary precision floating point arithmetic. In Proceedings of the 10th

IEEE Symposium on Computer Arithmetic (Arith’10), P. Kornerup and D. W. Matula (Eds.). IEEE
Computer Society Press, Los Alamitos, CA, 132–144.

D. M. Priest. 1992. On Properties of Floating-Point Arithmetics: Numerical Stability and the Cost of Accurate
Computations. Ph.D. Dissertation. University of California at Berkeley.

S. M. Rump, T. Ogita, and S. Oishi. 2008a. Accurate floating-point summation part I: faithful rounding.
SIAM J. Sci. Comput. 31, 1 (2008), 189–224. DOI:http://dx.doi.org/10.1137/050645671

S. M. Rump, T. Ogita, and S. Oishi. 2008b. Accurate floating-point summation part II: Sign, K-Fold faith-
ful and rounding to nearest. SIAM J. Sci. Comput. 31, 2 (2008), 1269–1302. DOI:http://dx.doi.org/
10.1137/07068816X

J. R. Shewchuk. 1997. Adaptive precision floating-point arithmetic and fast robust geometric predicates.
Discr. Comput. Geometry 18 (1997), 305–363.

P. H. Sterbenz. 1974. Floating-Point Computation. Prentice-Hall, Englewood Cliffs, NJ.

Received May 2016; revised October 2016; accepted February 2017

ACM Transactions on Mathematical Software, Vol. 44, No. 1, Article 4, Publication date: July 2017.

http://dx.doi.org/10.1007/s10543-013-0436-2
http://dx.doi.org/10.1137/050645671
http://dx.doi.org/10.1137/07068816X
http://dx.doi.org/10.1137/07068816X

