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MOURAD GOUICEM, LIRMM, CNRS/Université Montpellier 2, Sorbonne Universités, and CNRS
STEF GRAILLAT, Sorbonne Universités and CNRS

The IEEE 754-2008 standard recommends the correct rounding of some elementary functions. This requires
solving the Table Maker’s Dilemma (TMD), which implies a huge amount of CPU computation time. In this
article, we consider accelerating such computations, namely the Lefèvre algorithm on graphics processing
units (GPUs), which are massively parallel architectures with a partial single instruction, multiple data
execution.

We first propose an analysis of the Lefèvre hard-to-round argument search using the concept of continued
fractions. We then propose a new parallel search algorithm that is much more efficient on GPUs thanks to
its more regular control flow. We also present an efficient hybrid CPU-GPU deployment of the generation of
the polynomial approximations required in the Lefèvre algorithm. In the end, we manage to obtain overall
speedups up to 53.4× on one GPU over a sequential CPU execution and up to 7.1× over a hex-core CPU,
which enable a much faster solution of the TMD for the double-precision format.

Categories and Subject Descriptors: G.1.0 [Numerical Analysis]: General—Computer arithmetic; G.4
[Mathematical Software]—Parallel and Vector Implementations

General Terms: Algorithms, Reliability, Performance

Additional Key Words and Phrases: Correct rounding, Table Maker’s Dilemma, Lefèvre algorithm, GPU
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1. INTRODUCTION

1.1. Problem

Since 1985, the IEEE 754 standard has specified the implementation of floating-point
operations to have portable and predictable numerical software. In its latest revision in
2008 [IEEE Computer Society 2008], it defines formats (in this article, we will consider
only binary formats binary32, binary64, and binary128, even though the presented
algorithms work for any radix), rounding modes (to nearest and toward 0, −∞ and
+∞), and operations (+,−,×, /,

√
, FMA) returning correctly rounded values.
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Fig. 1. Example of undetermined correct rounding for rounding to nearest, where the rounding breakpoints
are the midpoints of floating-point numbers.

Furthermore, it recommends correct rounding of some elementary functions, such as
log, exp, and the trigonometric functions. However, it is hard to decide which interme-
diate precision is required to guarantee a correctly rounded result for an elementary
function—the rounded evaluation of the approximation must be equal to the rounded
evaluation of the function with infinite precision. This problem is known as the Table
Maker’s Dilemma (TMD) [Muller et al. 2009].

1.2. State of the Art

There exist theoretical bounds on the intermediate precision required for correctly
rounded functions [Muller et al. 2009], but these are not sharp enough for efficient
floating-point implementations of elementary functions. For example, the Nesterenko
and Waldschmidt [1996] bound for the exponential in double precision states that
7,290,678 bits of intermediate precision suffice to provide a correctly rounded result.
However, according to probabilistic hypotheses, we expect this intermediate precision to
be slightly more than twice the working precision (106 bits for double precision) [Muller
et al. 2009]. Hence, ad hoc methods are needed to find a sharper bound for each function.

A first method introduced by Ziv [1991] was to compute an approximation y of a
function value f (x) with an error bounded by ε = |y − f (x)| (containing mathematical
and round-off errors). As rounding modes are monotonic, if y − ε and y + ε round to
the same floating-point number, then f (x) does as well; otherwise, the correct rounding
cannot be determined from y alone (Figure 1). Therefore, a correctly rounded result
of f (x) can be obtained by refining the approximation (y, ε), decreasing ε until y − ε
and y + ε round to the same floating-point number. For the most common elementary
functions, such an ε exists according to the Lindemann—Weierstrass theorem, when
the function is evaluated at almost all floating-point numbers [Galochkin 2011].

However, precomputing an ε that guarantees correct rounding of the evaluation
of f at any floating-point argument allows one to guarantee that the Ziv method
will stop after no more than a few iterations and to simplify the implementation by
avoiding to write unneeded high-precision Ziv iterations. This can be done by finding
the hardest-to-round arguments of the function—that is to say, the arguments requiring
the highest precision for the evaluation of f (x) to be correctly rounded. This precision
guaranteeing the correct rounding for all arguments is called the hardness-to-round of
the function. The hardest-to-round cases can be found by invoking the Ziv algorithm
at every floating-point number in the domain of definition of the function, but this is
prohibitive (some multiple of 2p operations when considering precision-p floating-point
numbers as arguments).

The first improvement was proposed by Lefèvre et al. [1998] (the Lefèvre algorithm).
The main idea of their algorithm is to split the domain of definition into several do-
mains Di, to “filter” hard-to-round cases (HR-cases) for a fixed extended precision, and
then to use the Ziv algorithm to find the hardest-to-round cases among them. This
filtering is efficiently performed using local affine approximations of the targeted func-
tion over O(22p/3) domains Di. Stehlé et al. [2005] extended this method in 2003 (the
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SLZ algorithm) for higher-degree approximations, using the Coppersmith method for
finding small roots of a univariate modular equation over O(2p/2) domains Di.

1.3. Motivations and Contributions

Even if they are asymptotically and practically faster than an exhaustive search, the
Lefèvre and SLZ algorithms remain very computationally intensive. For example, the
Lefèvre algorithm required around 5 years of CPU time for the exponential function
over all double-precision arguments, and the SLZ algorithm took around 9 years of
CPU time for the function 2x over extended double-precision arguments in the inter-
val [1/2, 1] [Stehlé et al. 2003]. Moreover, even if the hardest-to-round cases of some
functions in double precision are known [Muller et al. 2009], it is still not the case
for about half of the univariate functions recommended by IEEE standard 754-2008.
Furthermore, we still have no efficient way to find the hardest-to-round cases of any
elementary function in double precision, and quadruple precision is out of reach. We
will hence be interested in accelerating the search for hardest-to-round cases in double
precision (binary64).

As both algorithms split the domain of definition of the targeted function into do-
mains Di and search for HR-cases in them independently, these computations are
embarrassingly and massively parallel. The purpose of this work is therefore to ac-
celerate these computations on graphics processing units (GPUs), which theoretically
perform one order of magnitude better than CPUs on suitable problems thanks to their
massively parallel architectures.

We will focus here on the Lefèvre algorithm, which has been used to generate
hardness-to-round values for all functions for which they are known, for double pre-
cision [Muller et al. 2009]. The Lefèvre algorithm is asymptotically less efficient than
SLZ, as it considers more domains Di (O(22p/3) against O(2p/2)). However, it performs
fewer operations per domain Di (O(log p) against O(poly(p))). Therefore, the Lefèvre
algorithm is more efficient than SLZ in practice for finding the hardness-to-round of
elementary functions for the double-precision format [Muller et al. 2009] and offers
fine-grain parallelism, making it suitable for a GPU.

In Fortin et al. [2012], we discussed implementation techniques to deploy the original
Lefèvre algorithm efficiently on GPUs, which led to an average speedup of 15.4× with
respect to the reference CPU implementation on one CPU core. The major bottleneck of
this GPU deployment was the control-flow divergence, which is penalizing considering
the partial single instruction, multiple data (SIMD) execution of the GPU. Hardware
[Brunie et al. 2012] and software [Frey et al. 2012; Han and Abdelrahman 2011]
general solutions have been proposed to address this problem on GPUs. However,
these solutions are not efficient in our context, as we have a very fine computation
grain for each GPU thread. Hence, we focus here on algorithmic solutions to directly
tackle the origin of this divergence issue.

In this article, we thus redesign the Lefèvre algorithm with the continued fraction
formalism, which enables us to get a better understanding of it and to propose a much
more regular algorithm for searching HR-cases. More precisely, we strongly reduce
two major sources of divergence in the Lefèvre algorithm: loop divergence and branch
divergence. We also propose an efficient hybrid CPU-GPU deployment of the generation
of polynomial approximations Di using fixed-sized multiprecision operations on the
GPU. These contributions enable an overall speedup of 53.4× on a GPU over Lefèvre’s
original sequential CPU implementation and of 7.1× over six CPU cores (with two-way
SMT). Finally, as we obtain in the end the same HR-cases as Lefèvre, de Dinechin,
and Muller experiments [de Dinechin et al. 2011; Lefèvre and Muller 2001], we also
strengthen the confidence in the generated HR-cases.
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1.4. Outline

We first introduce some notions on GPU architecture and divergence in Section 2. Then
in Section 3, we present some mathematical background on the TMD and properties
of the set {a · x mod 1 | x < n} with a fixed and x a positive integer. In Section 4,
we detail the HR-case search step of the Lefèvre algorithm and of the new and more
regular algorithm, along with their deployment on a GPU. In Section 5, we detail how
to efficiently generate on a GPU the polynomial approximations Di needed by the two
HR-case searches. Finally, we present performance results in Section 6 and conclude
in Section 7.

2. GPU COMPUTING

GPUs are many-core devices originally intended for graphics computations. However,
since the mid-2000s, they became increasingly used for high-performance scientific
computing, since their massively parallel architectures theoretically perform one order
of magnitude better than CPUs, and since general-purpose languages adapted to GPUs
(e.g., CUDA [NVIDIA 2012a] and OpenCL [Khronos Group 2011]) have emerged. In
this section, we briefly describe the architecture of the NVIDIA GPU used to test our
deployments (the Fermi architecture), GPU programming in CUDA, and the divergence
problems arising from the partial SIMD execution on the GPU. Here we use the CUDA
nomenclature.

2.1. GPU Architecture and CUDA Programming

From a hardware point of view, a GPU is composed of several streaming multiprocessors
(SMs; there are 14 SMs on Fermi C2070), each being an SIMD unit [NVIDIA 2011].
An SM is composed of multiple execution units or CUDA cores (32 on Fermi) sharing
the same pipeline and many registers (32,768 on Fermi). GPU memory is organized
into two levels: device memory, which can be accessed by any SM on the device, and
shared memory, which is local to each SM. The device memory accesses are cached on
the Fermi architecture.

From a software point of view, the developer writes in CUDA a scalar code for
one function designed to be executed on the device, namely a kernel. At runtime,
many threads are created by blocks and bundled into a grid to run the same kernel
concurrently on the device. Each block is assigned to an SM. Within each block, threads
are executed in groups of 32, called warps. The ratio of the number of resident warps
(the number of warps that an SM can process at the same time for a given kernel) to
the maximum number of resident warps per SM is called the occupancy. To increase
the occupancy, the number of blocks and their sizes have to be tuned.

2.2. Divergence

As threads are executed by warps on the GPU SIMD units, applications should have
regular patterns for memory accesses and control flow.

The regularity of memory access patterns is important to achieve high memory
throughput. As the threads within a warp load data from memory concurrently, the
developer has to coalesce accesses to device memory and avoid bank conflicts in the
shared memory (Chapter 6 in NVIDIA [2012a]). This can be done by reorganizing data
storage.

The regularity of control flow is important to achieve high instruction throughput and
is obtained when all threads within a warp execute the same instruction concurrently
(Chapter 9 in NVIDIA [2012a]). In fact, when the threads of a same warp diverge (i.e.,
they follow different execution paths), the different execution paths are serialized. For
an if statement, the then and else branches are serially executed. For a loop, any thread
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exiting the loop has to wait until all threads of its warp exit the loop. In the following,
we will distinguish branch divergence due to if statements and loop divergence due to
loop statements.

The impact of branch divergence can be statically estimated by counting the number
of instructions issued within the scope of the if statement. Let us consider the case
where the then branch issues nthen instructions and the else branch issues nelse instruc-
tions. If the warp does not diverge, either nthen or nelse instructions are issued depending
on the evaluation of the condition. If the warp diverges, nthen + nelse instructions are
issued.

Unlike branch divergence, measuring the impact of loop divergence requires a dedi-
cated indicator and profiling. In Fortin et al. [2012], we introduced the mean deviation
from the maximum of a warp. This indicator is similar to the standard deviation, which
is the mean deviation from the mean value. However, as the number of loop iterations
issued for a warp is equal to the maximum number of loop iterations issued by any
thread within the warp, it is relevant to consider the mean deviation from the maxi-
mum value. This gives the mean number of loop iterations a thread remains idle within
its warp. More formally, we denote �i as the number of loop iterations of the thread i
and number the threads within a warp from 1 to 32. If � = {�i, i ∈ �1, 32�}, the mean
deviation from the maximum (MDM) of a warp is defined as

MDM(�) = max(�) − mean(�).

We can normalize the MDM by max(�) to compute the average percentage of loop
iterations for which a thread remains idle within its warp. Hence, the normalized
mean deviation from the maximum (NMDM) is

NMDM(�) = 1 − mean(�)
max(�)

.

3. MATHEMATICAL PRELIMINARIES

In this section, we give some definitions to introduce the TMD more formally. We
also recall some known properties on the distribution of the elements of the set {a · x
mod 1 | x < n} with a fixed and x a positive integer [Slater 1967], as well as the
corresponding continued fraction formalism.

3.1. The TMD

Before defining the TMD, we introduce some notations and definitions. We denote {X}
or X mod 1 as the positive fractional part of X. We write X cmod 1 as the centered
modulo, which is the real Y such that X−Y ∈ Z and Y ∈ (−1/2, 1/2] (Y equals X−�X�
or X − �X� depending on which has the lowest absolute value). We also write Fp as the
set of precision-p floating-point numbers and |E|p as the number of precision-p floating-
point numbers in the set E (namely, |E ∩ Fp|). We recall that we consider only binary
floating-point format in this article (even though all definitions can be generalized to
any radix).

Definition 3.1. The significand m(x) and the exponent e(x) of a nonzero real number x
are defined by |x| = m(x) · 2e(x) with 1/2 ≤ m(x) < 1. We will also denote Mp(x) = 2p · m(x)
as the scaled significand.

Definition 3.2. The scaled distance between a real number x and the closest precision-
p floating-point number is defined by distp(x) = |Mp(x) cmod 1|.
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Fig. 2. Distances between the curve defined by f and the rounding breakpoints for rounding-to-nearest.
The points of the grid are formed by the floating points on the x-axis and the rounding breakpoints on the
y-axis.

Definition 3.3. We now define a (p, ε) hard-to-round case (or HR-case) of a real-valued
function f as a precision-p floating-point number x solution of the inequality

distp( f (x)) < ε.

The given definition of an HR-case only applies for directed rounding. However, this
definition can be extended to all IEEE-754 rounding modes, as rounding-to-nearest
(p, ε) HR-cases are directed rounding (p + 1, 2ε) HR-cases. To simplify notations, we
will then focus on directed rounding HR-cases. It has to be noticed that if x is a (p, ε)
HR-case, it also satisfies Mp( f (x)) + ε < 2ε mod 1. The latter inequality is used to
test whether an argument is a (p, ε) HR-case, as it avoids the computation of absolute
values and cmod.

Hence, a (p, 2−p′
) HR-case x is a precision-p floating-point number for which f (x)

is at a scaled distance (as defined in Definition 3.2) less than 2−p′
from the closest

precision-p floating-point number. In other words, more than p + p′ bits of accuracy
are necessary to correctly round f (x) at precision-p.

Definition 3.4 (Table Maker’s Dilemma). Given a real valued function f defined over
a domain D and a precision p, the TMD is defined as the problem of finding the smallest
integer p′ such that there are no (p, 2−p′

) HR-cases in D.

We call hardest-to-round cases the arguments x ∈ D minimizing distp( f (x)). Knowing
the hardest-to-round cases gives us a lower bound on the distances between the function
f and the rounding breakpoints (Figure 2) and therefore a solution to the TMD, as they
are (p, 2−p′−1) HR-cases.

The general method to find the hardest-to-round cases of a function is the following:

(1) Fix a “convenient” ε using probabilistic assumptions [Muller et al. 2009].
(2) Find (p, ε) HR-cases with ad hoc methods such as the Lefèvre or the SLZ algorithms.
(3) Find the hardest-to-round among the (p, ε) HR-cases using the Ziv [1991] method.

The most compute-intensive step in this method is to find the (p, ε) HR-cases. To
this purpose, the Lefèvre and SLZ algorithms both rely on the following three major
steps:
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(1) The splitting of the domain of definition of the function: We split the domain
of definition of the function into d domains Di = [Xi, Xi+1) ∩ Fp such that
∀x, y ∈ Di e(x) = e(y) and ∀i, j ∈ �0, d − 1� |Di|p = |Dj |p.

(2) The generation of polynomial approximations: We approximate the function f (X)
with X ∈ Di by polynomials Pi(x) with x ∈ �0, |Di|p − 1� such that |Pi(x) − f (X)| <

εapprox2e( f (X))−p. We thus proceed to a change of variable, enabling us to test the
floating-point arguments X ∈ Di by testing the integers x ∈ �0, |Di|p − 1�. Each
polynomial Pi is first centered on the domain Di by applying the change of variable
φ1 : X → X − Xi. Then, as the exponent is constant over each domain Di, we will
consider integer arguments by applying the change of variable φ2 : X → X · 2p−e(Xi ).
All in all, x = φ2 ◦ φ1(X) = 2p−e(Xi )(X − Xi).

(3) The HR-case search: We find the (p, ε′) HR-cases of Pi with ε′ = ε + εapprox that
comprise all (p, ε) HR-cases for f in Di.

In the HR-case search of both algorithms, a Boolean test is used to isolate HR-cases.
It succeeds if there are no (p, ε′) HR-cases for Pi in Di and fails otherwise. It has to
be noticed that ε′ should be small enough such that very few HR-cases exist in each
domain to test (based on probabilistic assumptions [Muller et al. 2009]).

In this article, we focus on the Lefèvre algorithm, which truncates the polynomials Pi
to degree 1 for the Boolean test. We denote Qi(x) = Pi(x) mod x2 as the truncation of
Pi to degree 1. As the Boolean test requires a fixed scaled error bound over each
domain to test against, we define q = minx∈�0,|Di |p−1� {e(Pi(x))} such that |Qi(x)− Pi(x)| <

εtrunc2q−p, and

2p−q Qi(x) + ε′′ = b − a · x,

with ε′′ = ε′ + εtrunc. A consequence of this scaling is to create false HR-cases where
a change of exponent occurs in the codomain—these false HR-cases can easily be
eliminated subsequently. Hence, the Boolean test of the Lefèvre algorithm consists of
testing whether following inequality holds:

min {b − a · x mod 1 | x < |Di|p} < 2ε′′. (1)

More precisely, if the inequality (1) does not hold, then there are no (p, ε′′) HR-cases
for Qi in Di, which implies that there is no (p, ε′) HR-case for Pi in Di. Therefore,
the Boolean test returns Failure if the inequality (1) holds, and Success or Failure
(false HR-case) if it does not hold. In the case of Failure, further tests are needed, and in
the case of Success, one can deduce that there are no HR-cases in the domain. Moreover,
we remark that computing the minimum of the set {b − a · x mod 1 | x < |Di|p} is
similar to finding the multiple of a that is the closest to the left of b modulo 1 on the
unit segment [0, 1).

3.2. Properties of the Set {a · x mod 1 | x < n}
Here we will detail some properties on the configurations of the points {a · x
mod 1 | x < n} over the unit segment, with x a nonnegative integer. These properties
are necessary to efficiently locate the closest point to b mod 1 in these configurations.

THEOREM 3.5 (THREE DISTANCE THEOREM [SLATER 1950]). Let 0 < a < 1 be an irrational
number. If we place on the unit segment [0, 1) the points {0}, {a}, {2a}, . . . , {(n−1)a}, then
these points partition the unit segment into n intervals having at most three lengths
with one being the sum of the two others.
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Actually, the lengths, and the distribution of these lengths, heavily rely on the con-
tinued fraction expansion of a [Slater 1967], which we will denote by

a = 1

k1 + 1

k2 + . . .

.

We denote by (θi)i∈N the sequence of the remainders computed during the continued
fraction expansion of a using the Euclidean algorithm, and by (pi/qi)i∈N the sequence
of the convergents of a, defined by the following recurrence relations:

θ−1 = 1, θ0 = a, θi+1 = θi−1 − ki+1 · θi;
p−1 = 1, p0 = 0, pi+1 = pi−1 + ki+1 · pi;
q−1 = 0, q0 = 1, qi+1 = qi−1 + ki+1 · qi;

with ki+1 = �θi−1/θi�. Note that (θi)i∈N is a decreasing real-valued positive sequence,
whereas (pi)i∈N and (qi)i∈N are increasing integer-valued positive sequences. We also
define θi−1,t = θi−1 − t · θi and qi−1,t = qi−1 + t · qi with t ∈ �0, ki+1�. The lengths obtained
when adding multiples of a over the unit segment are therefore the elements of the
sequence (θi,t)i∈N,t∈�0,ki+1� [Slater 1967]. An example is provided in Figure 3 and Table I.
All of the properties provided in this section are valid when a is irrational. However,
they are also valid for a rational as long as θi �= 0 (that is to say, until the last quotient
of the continued fraction expansion is computed).

In the following, we will use some properties of the configurations {a · x mod 1 | x <
n} that contain intervals of only two different lengths. They are of algorithmic interest,
as there are only O(log n) such configurations when n tends to infinity. Each label (i, t),
with i ∈ N and t ∈ �0, ki+1�, denotes one two-length configuration that satisfies the
following equation:

qi · θi−1,t + qi−1,t · θi = 1. (2)

Equation (2) gives details on the number of intervals of each length. After adding
qi + qi−1,t multiples of a mod 1 over the unit segment, there are exactly two different
lengths of intervals over the unit segment: qi intervals of length θi−1,t and qi−1,t intervals
of length θi.

A special and noticeable subset of the two-length configurations corresponds to the
configurations produced using the division-based Euclidean algorithm. These are the
(i, 0) configurations, satisfying

qi · θi−1 + qi−1 · θi = 1. (3)

Furthermore, we have a way to construct the two-length configurations, which follows.

PROPERTY 1 (TWO-LENGTH CONFIGURATIONS CONSTRUCTION [SLATER 1967]). Given the (i, t)
two-length configuration, the next two-length configuration is{

(i, t + 1) if t < ki+1 − 1,

(i + 1, 0) if t = ki+1 − 1.

To simplify the notation, given the (i, t) configuration, we will write (i, t + 1) for the
next two-length configuration and assimilate the configuration (i, ki+1) to (i + 1, 0).
Property 1 implies that for going from a two-length configuration to the next one,
the intervals of length θi−1,t are split. The way intervals are split is described by the
following directed reduction property and illustrated in Figure 3.
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Fig. 3. Example of {a · x mod 1 | x < n} configurations generated by a = 14/45. The unit segment is scaled
by a factor of 45 for clarity. Each two-length configuration is labeled by its index (i, t) on the right. Each
segment is labeled by its length above, and each multiple of a is labeled by its index below.
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Table I. Values of θi , θi−1,t , qi , qi−1,t and ki+1
for Each Two-Length Configuration of

the Example of Figure 3

i t qi−1,t qi θi−1,t θi ki+1
0 0

1
45

14 30 1 1 31
2 2 17

1

0 1

3

14

3 41 4 11
2 7 8
3 10 5

2 0 3 13 3 2 1

3 0 13 16 2 1 2
1 29 1

4 0 16 45 1 0 1
Note: As in Figure 3, the lengths θi and θi−1,t
are scaled by a factor of 45.

PROPERTY 2 (DIRECTED REDUCTION [VAN RAVENSTEIN 1988]). Given the two-length con-
figuration (i, t), when constructing the next two-length configuration, intervals of length
θi−1,t are split into two intervals in this order from left to right:

—one of length θi and one of length θi−1,t+1 if i is even,
—one of length θi−1,t+1 and one of length θi if i is odd.

4. HR-CASE SEARCH ON THE GPU

In this section, we describe two algorithms for HR-case search: Lefèvre [2005] HR-case
search, as originally described, and our new HR-case search, which is more regular in
the sense of reducing divergence. Both algorithms make use of Boolean tests that rely
on the properties described in Section 3.2. Hence, we will describe both of them with
continued fraction expansions, which give a uniform formalism to explain and compare
their different behaviors. Then we will describe how they have been deployed on the
GPU and the benefit on divergence provided by our new algorithm.

4.1. The Lefèvre HR-Case Search

Lefèvre [2005] presented an algorithm to search for (p, ε′) HR-cases of a polynomial
Pi(x). This algorithm relies on a Boolean test on Qi(x) (the truncation of Pi(x) to degree
1) that computes a lower bound of the set {b − a · x mod 1 | x < |Di|p} and returns
Failure if the inequality (1) holds and Failure or Success otherwise.

In Section 3.2, we described some properties of the configurations {a · x mod 1 | x <
n}. According to these properties, computing the interval lengths of a subset of the
two-length configurations can be done efficiently in O(log |Di|p) arithmetic operations
by computing the continued fraction expansion of a [Brent and Zimmermann 2010].
However, if we use the continued fraction expansion, we will place more points than
|Di|p on the unit segment (at most 2 · |Di|p if we use the subtraction-based Euclidean
algorithm). To take advantage of the efficient construction of the two-length configura-
tions, the Lefèvre HR-case search computes the minimum of {b − a · x mod 1 | x < n}
with n the number of multiples of a placed and n ≥ |Di|p . This gives a lower bound on
{b − a · x mod 1 | x < |Di|p}. Then the minimum of {distp(Pi(x)) < ε′ | x < |Di|p} is ex-
actly computed by exhaustive search in O(|Di|p) arithmetic operations only if required.
To minimize this exhaustive search, we use a filtering strategy in three phases as in
Lefèvre [2005]:
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ALGORITHM 1: Lefèvre Lower Bound Computation and Test Algorithm (Simplified).
input: b − a · x, ε ′′, N

1 initialization: p ← {a}; q ← 1 − {a}; d ← {b};
u ← 1; v ← 1;

2 if d < ε ′′ then return Failure;
3 ;
4 while True do
5 if d < p then
6 k ← �q/p�;
7 q ← q − k ∗ p; u ← u + k ∗ v;
8 if u + v ≥ N then return Success;
9 ;

10 p ← p − q; v ← v + u;
11 else
12 d ← d − p;
13 if d < ε ′′ then return Failure;
14 ;
15 k ← �p/q�;
16 p ← p − k ∗ q; v ← v + k ∗ u;
17 if u + v ≥ N then return Success;
18 ;
19 q ← q − p; u ← u + v;

—Phase 1: We compute a lower bound on {b − a · x mod 1 | x < |Di|p} and test if this
lower bound matches a (p, ε′′) HR-case of Qi. If not, there are no (p, ε′) HR-cases for
Pi in Di. Otherwise, go to the next phase.

—Phase 2: We split Di into subdomains Di, j , we refine the approximation Qi(x) as
Qi, j(x), and we compute a lower bound on {bj − aj · x mod 1 | x < |Di, j |p} for each
Di, j . For each Di, j where the lower bound on {bj − aj · x mod 1 | x < |Di, j |p} matches
a (p, ε′′

j ) HR-case of Qi, j , go to the next phase.
—Phase 3: We search exhaustively for (p, ε′) of Pi in Di, j using the table difference

method (see Section 5).

The cornerstone of the Lefèvre algorithm strategy is therefore the computation of the
minimum of {b−a · x mod 1 | x < n}. In other words, it computes the distance between
{b} and the closest point to the left of {b} in the configuration {a · x mod 1 | x < n}.
We write N for the number of floating-point numbers in the considered subdomain
(n ≥ N as we compute a lower bound). Depending on how we generate the two-length
configurations (using the subtraction-based or the division-based Euclidean algorithm),
we can derive from Property 2 two ways to compute this distance. The first one is the
Lefèvre HR-case search, and the second one is the new HR-case search proposed in
Section 4.2.

In the lower bound computation of the Lefèvre HR-case search, the way the two-
length configurations are computed depends on the length of the interval containing
{b}. When adding points in the interval containing {b} and in the direction of {b}, Lefèvre
uses a subtraction-based Euclidean algorithm (he moves from the (i, t) configuration to
(i, t + 1)). Otherwise, he uses a division-based Euclidean algorithm (he moves from the
(i, t) configuration to (i + 1, 0)). Algorithm 1 describes the lower bound computation of
the Lefèvre HR-case search and the corresponding test with respect to ε′′, which is the
sum of all errors involved.

In this algorithm, the variables u and v count the number of intervals as in Equa-
tion (2) to exit when n = u + v ≥ N, where u and v respectively store qi and qi−1,t for i
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Fig. 4. Behavior of the Lefèvre (left) and the new (right) HR-case searches when b is in an interval of length
θi (solid lines) and when b is in an interval of length θi−1,t (dashed lines). Each point is labeled by the index
(i, t) of the two-length configuration in which it is added.

even and qi−1,t and qi for i odd. The variables p and q respectively store the lengths θi
and θi−1,t for i even and the lengths θi−1,t and θi for i odd. The variable d contains the
distance between {b} and the closest multiple {a · x} to its left.

Hereafter, we detail the relations between the two-length configurations and the
execution paths of Algorithm 1, Lefèvre’s lower bound computation and test. This
algorithm starts with the configuration (0, 1) and then considers the (i, t) configurations.
Note that the condition at line 4 is false only if we have added one point directly to
the left of {b} during the previous loop iteration, and it is true otherwise. Hence, it
has to be interpreted as “does d need to be updated?” This interpretation is allowed
by the fact that the value of d at line 4 corresponds to the previous configuration (the
configuration (0, 0) at start) and that at least one point was already added (line 8 or
15). This condition enables us to handle the next four cases (illustrated in Figure 4):

—If i is even:
—If {b} is in an interval of length θi, then d < θi (this happens if the point previously

added is just at the right of {b}). In this case, no point is added in the interval
containing {b}, so we go directly to the configuration (i + 1, 0) (lines 5 and 6) and
(i + 1, 1) (line 8).

—If {b} is in an interval of length θi−1,t, then d > θi (this case happens if the point
previously added is just at the left of {b}). In this case, d is updated by subtracting θi
(line 10), k = 0 since θi−1,t > θi (lines 12 and 13), and we go to configuration (i, t+1)
(line 15), as other points can be added to the left of {b} in the next two-length
configuration under Property 2.

—If i is odd:
—If {b} is in an interval of length θi, then d > θi−1,t (this case happens if the point

previously added is just at the left of {b}). In this case, d is updated (line 10), and
we go to the configuration (i + 1, 0) (lines 12 and 13) and (i + 1, 1) (line 15).

—If {b} is in an interval of length θi−1,t, then d < θi−1,t (this case happens if the point
previously added is just at the right of {b}). In this case, k = 0 since θi−1,t > θi (lines
5 and 6), and we go to the configuration (i, t + 1) (line 8), as a point can be added
to the left of {b} in the next two-length configuration according to Property 2.

Note that the Lefèvre algorithm always reduces d by using subtractions at line 10,
as points are added one by one at the left of {b}. In practice, Lefèvre adds specific
instructions to partly compute these reductions with divisions to avoid computing
large quotients with subtractions. We have omitted these instructions here for clarity,
but they are present in our implementations of the Lefèvre algorithm.

Furthermore, the algorithm computes divisions (lines 5 and 12). In practice, we can
make use of different division implementations. We can apply a subtractive division, a
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ALGORITHM 2: New Regular Lower Bound Computation and Test Algorithm.
input: b − a · x, ε ′′, N

1 initialization: p ← {a}; q ← 1; d ← {b};
u ← 1; v ← 0;

2 if d < ε ′′ then return Failure;
3 ;
4 while True do
5 if p < q then
6 k ← �q/p�;
7 q ← q − k ∗ p; u ← u + k ∗ v;
8 d ← d mod p;
9 else

10 k ← �p/q�;
11 p ← p − k ∗ q; v ← v + k ∗ u;
12 if d ≥ p then
13 d ← (d − p) mod q;
14 if u + v ≥ N then return d > ε ′′;
15 ;

division instruction, or combine both in an hybrid approach as presented and analyzed
in Lefèvre [2005] and Fortin et al. [2012].

4.2. New Regular HR-Case Search

We now propose a new algorithm for the HR-case search where we use the same
filtering and division strategy as in the Lefèvre algorithm, but we introduce a more
regular algorithm—in the sense that it strongly reduces divergence on the GPU—to
compute a lower bound on {b − a · x mod 1 | x < |Di|p}. Hereafter, we will refer to this
new algorithm as the regular HR-case search.

The regular HR-case search is described in Algorithm 2. In it, we only consider
configurations satisfying Equation (3) in order to use only the division-based Euclidean
algorithm. The variables p and q respectively store the lengths θi and θi−1 for i even
and the lengths θi−1 and θi for i odd. The variables u and v respectively store qi and
qi−1 for i even and qi−1 and qi for i odd.

Thus, instead of testing if {b} went from a split interval to an unsplit one like in
the Lefèvre HR-case search, we test here which length is reduced, as in the classical
Euclidean algorithm, and then we reduce it and update d accordingly (as illustrated in
Figure 4). In practice, the quotients are computed like in the Lefèvre HR-case search
with a subtractive division, a division instruction, or the hybrid approach. Now we
detail the execution of Algorithm 2. Let (i, 0) be a two-length configuration:

—If i is even, then the test p < q is true since θi < θi−1, so we go to the configuration
(i + 1, 0) (lines 5 and 6), and:
—If {b} was in an interval of length θi, no point was added in the interval containing

{b} and d is not updated as d < θi and d = d mod θi (line 7).
—If {b} was in an interval of length θi−1, points were potentially added to the left of

{b}. Hence the distance d is updated by reduction modulo θi (line 7) since intervals
are split from the left under Property 2.

—If i is odd, then the test p < q (line 4) is false, so we go to the configuration (i + 1, 0)
(lines 9 and 10), and:
—If {b} was in an interval of length θi, no point was added in the interval containing

{b}. However, we subtract θi+1 from d if d ≥ θi+1 (line 12), which is similar to
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Fig. 5. Example where Algorithm 2 considers a configuration (i + 1, 1) for i = 1.

considering the configuration (i + 1, 1). Note that this would have been done in the
next loop iteration at line 7 (Figure 5).

—If {b} was in an interval of length θi−1, points were potentially added to the left of
{b}. According to Property 2, intervals are split from the right. Then the distance
d is updated if d > θi+1 by reducing d − θi+1 mod θi (lines 11 and 12).

Note that we do not test the divisors for division by zero in Algorithm 2, as it is
very unlikely to occur: we only catch the division-by-zero exception and recover from
it. The likelihood of a division by zero to happen is directly correlated to the proba-
bility of encountering a large quotient (which follows the Gauss-Kuzmin distribution
[Khinchin 1997]) at a given iteration. For example, while searching for (53, 2−32) HR-
cases, the probability of having a division by zero using 64-bit arithmetic is much
smaller than 2−64. Until now, we have never encountered a division-by-zero in all of
our tests.

4.3. Deployment on the GPU

The exhaustive search algorithm perfectly takes advantage of the GPU’s massive
parallelism and of its (partial) SIMD execution. Hence, we will focus on the deployment
of the lower bound computation. In this section, we present the GPU deployment of the
Lefèvre HR-case search as detailed in Fortin et al. [2012] and the GPU deployment of
the new regular HR-case search. We particularly study the divergence in both HR-case
searches at three levels: the filtering strategy, the main loop, and the main conditional
statement. For these deployments, we first changed the data layout to a “structure
of arrays” to have coalesced memory accesses (Section 6.2.1 in NVIDIA [2012a]). We
also avoided (as much as possible) consecutive dependent instructions to increase
the instruction-level parallelism within each thread. In addition, we mention that
the computation of the continued fraction expansion is done using the Lehmer double-
digit GCD algorithm [Brent and Zimmermann 2010] (we reduce the remainders by
32-bit chunks using 64-bit integers).

Throughout this section, we will consider the example domain [1, 1 + 2−13) in the bi-
nade [1, 2) for the exponential function in double precision, as this binade is considered
by Lefèvre [2005] as the general case.

4.3.1. Filtering Strategy Divergence. As a consequence of the filtering strategy, we will
have few threads executing phase 2 and fewer executing phase 3. Table II shows
the number of subdomains involved in each phase for 225 domains Di containing 215

floating-point numbers each. As we can see, very few subdomains are involved in the
exhaustive search step (phase 3). Hence, executing one kernel computing the three
phases leads to an important divergence, as we have fewer and fewer active threads
within each warp from one phase to the next [Fortin et al. 2012].
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Table II. Details of Argument Filtering During
HR-Case Search in [1, 1 + 2−13]

Number of Arguments
Lefèvre Regular

Phase 1 240 ≈ 1.1 · 1012 240 ≈ 1.1 · 1012

Phase 2 ≈ 3.6 · 109 ≈ 1.8 · 1010

Phase 3 ≈ 8.9 · 106 ≈ 5.9 · 107

HR-Cases 243 243

To tackle this problem, we propose to use three kernels, one for each phase. This
allows us to rebuild the grid of threads between each phase and to run the exact
number of threads required by each phase. However, this implies two additional costs.

First, we have to write failing subdomains1 of phases 1 and 2 into consecutive memory
locations as we prepare coalesced reads for the next phase. In Fortin et al. [2012], this
was done with atomic operations on the GPU global memory, since we had few failing
subdomains. For some specific binades, however, the number of failing subdomains can
be much greater and the numerous atomic operations result in lower performance.
Hence, inspired by the algorithm of Sengupta et al. [2008], we have implemented
optimized compact operations based on parallel prefix sums, which are specific to the
binary values used. Our compact operations are as efficient as the atomic operations
when we have few failing subdomains, and they are more efficient when there are
many.

Second, between each two successive kernels, we have to transfer the number of
failing subdomains back to the CPU to compute (on the CPU) a suitable CUDA grid
size for the next kernel.

It can be noticed in Table II that the Lefèvre HR-case lower bound computation
filters out a little more of the arguments than the new algorithm. The Lefèvre HR-
case lower bound computation uses the subtraction-based Euclidean algorithm when
splitting the interval containing {b}. This results in several considered arguments less
than 2N. On the contrary, we always use the division-based Euclidean algorithm in
the regular HR-case search. If we consider i such that qi + qi−1 < N < qi+1 + qi, then
qi+1 + qi = qi−1 + ki+1qi + qi < (ki+1 + 1)N – by considering qi < N. However, the
geometric mean of the quotients ki of the continued fraction of almost all real numbers
equals Khinchin’s constant (≈ 2.69) [Khinchin 1997]. Hence, using the regular HR-case
search, we consider an average of less than 3.69 · N arguments.

4.3.2. Loop Divergence. The second source of divergence is the main unconditional
loop (see line 3 in Algorithms 1 and 2). Figure 6 shows the NMDM of the number of
loop iterations by warp, for the different HR-case searches, when testing 225 domains
Di containing 215 double-precision floating-point arguments. Table III summarizes
statistical information on the NMDM and the number of iterations for both the Lefèvre
and regular HR-case searches.

For the Lefèvre HR-case search, the main unconditional loop is an important source
of divergence with a mean NMDM of 25.6%. In other words, a thread remains idle on
average 25.6% of the number of loop iterations executed by its warp. To the best of
our knowledge, there is no a priori information on the number of loop iterations that
would enable us to statically reorder the subdomains to decrease this divergence. We
also tried to use software solutions to reduce the impact of the loop divergence [Fortin
et al. 2012], although to no avail because the computation grain is very fine.

This divergence in the Lefèvre HR-case search is mainly due to the fact that the
quotients are either entirely or partially computed at each iteration depending on

1Subdomains for which the computed lower bound is less than ε′′ in Algorithms 1 and 2.
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Fig. 6. Normalized mean deviation to the maximum of the number of main loop iterations per warp among
the 220 warps required for the exp function in the domain [1; 1 + 2−13].

Table III. Comparison of the Main Loop Behavior Among the 220 Warps Required for the
Different HR-Case Searches on the Exp Function in the Domain [1, 1 + 2−13]

Min Max Mean
Iteration Iteration Iteration Mean

HR-Case search Number Number Number NMDM
Lefèvre 5 328 24 25.6%

with specific instructions 5 31 16 25.7%
Regular 8 19 12 0.1%

the position of b, even with the specific instructions (see Section 4.1). Thanks to these
specific instructions, the pathological cases are avoided (see Table III), but the mean
NMDM is still around 25.6%.

In the new regular HR-case search, the key point is that a quotient of the continued
fraction expansion of a is entirely computed at each loop iteration, which is not the
case in the Lefèvre HR-case search. Hence, the number of loop iterations only depends
on the number of quotients of the continued fraction expansion of a computed to reach
|Di|p points on the segment. As the number of quotients to compute is very close from
one subdomain to the next, we reduce the mean NMDM by warp to 0.1%.

4.3.3. Branch Divergence. The third source of divergence is on the main conditional
statement (see line 4 in Algorithms 1 and 2). We aim at reducing the number of
instructions controlled by the branch condition, and if they are reduced enough, we
benefit from the GPU branch predication (Section 9.2 in NVIDIA [2012a]). This branch
predication enables the pipelines to be filled at best, for short sections of divergent
code, by scheduling both then and else branches for all threads: thanks to a per-thread
predicate, only the relevant results are actually computed and finally written.

As observed in Fortin et al. [2012], both branches of the Lefèvre HR-case search con-
tain the same instructions, except the variables p (respectively, u) and q (respectively,
v) are interchanged, and p is subtracted from d in the else branch. We therefore swap
the two values p and q (respectively, u and v) to remove the common instructions from
the conditional scope. This is described in Algorithm 3. The swap implies a small extra
cost, but we thus reduce the number of divergent instructions.

As far as the new regular HR-case search is concerned, there is as much branch
divergence within the unconditional loop in Algorithm 2 as there is in Algorithm 1.
However, the main conditional statements of the two algorithms are rather different.
In the Lefèvre HR-case search, this test (line 4) depends on the position of point b
at each iteration. In the regular HR-case search, it depends on the length to reduce.
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ALGORITHM 3: Lefèvre’s Lower Bound Computation and Test Algorithm with Swap.
input: b − a · x, ε ′′, N

1 initialization: p ← {a}; q ← 1 − {a}; d ← {b};
u ← 1; v ← 1; are swapped ← False;

2 if d < ε ′′ then return Failure;
3 ;
4 if (d ≥ p) then
5 SWAP(p, q); SWAP(u, v);
6 are swapped ← T rue;
7 while True do
8 if are swapped then
9 d ← d − p;

10 if d < ε ′′ then return Failure;
11 ;
12 k ← �q/p�;
13 q ← q − k ∗ p; u ← u + k ∗ v;
14 if u + v ≥ N then return Success;
15 ;
16 p ← p − q; v ← v + u;
17 if are swapped xor (d ≥ p) then
18 SWAP(p, q); SWAP(u, v);
19 are swapped ← not(are swapped);

ALGORITHM 4: New Regular Lower Bound Computation and Test Algorithm Unrolled.
input: b − ax, ε ′′, N

1 initialization: p ← {a}; q ← 1; d ← {b};
u ← 1; v ← 0;

2 while True do
3 k ← �q/p�;
4 q ← q − k ∗ p; u ← u + k ∗ v;
5 d ← d mod p;
6 if u + v ≥ N then return d > ε ′′;
7 ;
8 k ← �p/q�;
9 p ← p − k ∗ q; v ← v + k ∗ u;

10 if d ≥ p then
11 d ← d − p mod q;
12 if u + v ≥ N then return d > ε ′′;
13 ;

Unlike the test on the position of b, the test on the length to reduce is deterministic, as
the regular HR-case search computes a quotient of the continued fraction expansion of
a at each loop iteration. Hence, the evaluation of the condition switches at each loop
iteration, and it first evaluates to True as p is initialized to {a} and q to 1. Therefore,
by unrolling two loop iterations, we can avoid this test and strongly reduce the branch
divergence. This is done in Algorithm 4.

5. POLYNOMIAL APPROXIMATION GENERATION ON THE GPU

In this section, we detail how we have deployed on the GPU the generation of the
polynomial approximations Pi required for the HR-case search algorithms described
in Section 4. We recall from Section 3.1 that the change of variable x = 2p−e(Xi )(X − Xi)
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enables testing of the floating-point arguments X ∈ Di of f (X) by testing the integer
arguments x ∈ �0, |Di|p − 1� of Pi(x).

Although individual Taylor approximations could be used on each domain Di, the
number of domains makes this prohibitive. The principle here is therefore to consider
the union of τ domains Dtτ , . . . , D(t+1)τ−1—denoted by Dt—and to approximate the
function f by a polynomial Rt of degree δ (e.g., with a Taylor approximation) such that
|Rt(x) − f (X)| < ε′

approx2e( f (X))−p for all X ∈ Dt with x = 2p−e(Xt)(X − Xt).
If τ is chosen such that e(x) = e(y) for all x, y ∈ Dt, then Ptτ+i(x) is defined as an

approximation of Rt(x + iN) for 0 ≤ i < τ with N = |Dt|p (as |Di|p = |Dj |p, for all i, j ∈
�tτ, (t + 1)τ − 1�). The shifts of the form Rt(x + iN) are called Taylor shifts [von zur
Gathen and Gerhard 1997]. If we denote by εshi f t the error propagated by the shift such
that |Ptτ+i(x) − Rt(x + iN)| < εshi f t, then we set εapprox to εapprox = ε′

approx + εshi f t (see
Section 3.1).

We now consider how to compute these polynomials Ptτ+i. We first present the hier-
archical method originally designed by Lefèvre [2000] to change one Taylor shift by N
into several Taylor shifts by 1. Then, we present two existing Taylor shift algorithms:

—the tabulated difference shift, which, starting with Ptτ (x) = Rt(x), sequentially iter-
ates a shift of the polynomial Ptτ+i to obtain Ptτ+i+1 with only multiprecision additions
[de Dinechin et al. 2011], and

—the straightforward shift, which computes the Ptτ+i ’s from Rt in parallel but requires
multiprecision multiplications and additions [von zur Gathen and Gerhard 1997].

Finally, we propose a hybrid CPU-GPU Taylor shift algorithm that efficiently combines
these two shifts with the hierarchical method and requires only fixed-size multipreci-
sion additions on GPUs. More details on these algorithms and their error propagation
can be found in de Dinechin et al. [2011].

5.1. Hierarchical Method

We first describe the hierarchical method originally described in Lefèvre [2000], which
transforms one shift by N of a polynomial Rt(x) of degree δ into δ + 1 shifts by 1.
This is of interest, as shifting by 1 can be done with only additions (see Section 5.2).
This method requires the input polynomial to be interpolated in the binomial basis

( x
j ) =

∏ j−1
l=0 (x−l)

j! . Therefore, we define the forward difference operator and its application
to interpolate a polynomial in the binomial basis.

Definition 5.1. The forward difference operator, denoted by �h, is defined as
�h[P](x) = P(x + h) − P(x). We write �

j
h for the composition of �h j times and de-

fine � = �1.

Using this forward difference operator, one can efficiently interpolate the polyno-
mial Rt of degree δ in the binomial basis [de Dinechin et al. 2011], given the val-
ues {Rt(x), x ∈ �0, δ�} as Rt(x) = ∑δ

j=0 � j[Rt](0) · ( x
j ). An example is shown in Fig-

ure 7. This interpolation is computed using the definition of � and with initial values
�0[Rt](x) = Rt(x). This algorithm is a particular case of the Newton interpolation but
with the forward difference operator used instead of the forward divided difference
operator.

Now we describe the hierarchical method [Lefèvre 2000]. Given a polynomial Rt(x),
we want to build a scheme to shift this by polynomial in consecutive arguments follow-
ing an arithmetic progression with common difference N. Let us consider the univariate
polynomial Rt as a bivariate polynomial Rt(x + iN) in the variables x and i. By inter-
polation in the binomial basis with respect to the variable x, we obtain a polynomial in
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Fig. 7. Newton interpolation of polynomial x3. The coefficients of the interpolated polynomial are high-
lighted.

Fig. 8. Tabulated difference shift for evaluating the polynomial rt, j (i) = i3. The coefficients of the shifted
polynomials are highlighted.

the variable x, with polynomial coefficients rt, j(i) = � j[Rt](iN) in the variable i, defined
as follows:

Rt(x + iN) =
δ∑

j=0

rt, j(i)
(

x
j

)
.

Using the hierarchical method, we thus obtain the polynomials rt, j(i). From these, one
can compute the shifts Ptτ+i(x) of the polynomial Rt(x) by iN by evaluating rt, j(i) with
0 ≤ j ≤ δ. If we consider the polynomials rt, j in the binomial basis, these evaluations
rt, j(i) can be obtained with the consecutive Taylor shifts of rt, j by 1—by taking the
coefficients of degree 0 of these shifts, which are the �0[rt, j](i).

5.2. Taylor Shift Algorithms

Taylor shifts by 1 can be performed efficiently with the tabulated difference shift [de
Dinechin et al. 2011; Lefèvre et al. 1998]. According to the forward difference operator
definition, �l[rt, j](i) = �l−1[rt, j](i + 1) − �l−1[rt, j](i)—in other words, �l−1[rt, j](i + 1) =
�l−1[rt, j](i) + �l[rt, j](i). Furthermore, if deg(rt, j) = γ, then �γ [rt, j](i) is constant for
any integer i ≥ 0, as it is the γ th discrete derivative of rt, j times γ !. Hence, the only
needed operations to obtain the consecutive evaluations of the polynomials rt, j are
multiprecision additions of the coefficients. An example of this algorithm can be found
in Figure 8.

Obtaining the consecutive evaluations of rt, j can also be performed with the straight-
forward shift. This algorithm multiplies the vector of the rt, j polynomial coefficients by
a matrix constructed using Newton’s binomial theorem. If we consider the polynomials
rt, j expressed in the binomial basis, this multiplication exactly corresponds to applying
the tabulated difference algorithm i times to the polynomial rt, j . This matrix is upper
triangular and Toeplitz, which can be used to speed up the matrix-vector multiplication
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for high degree. It is constructed as⎛
⎜⎜⎜⎜⎝

(i
0

) (i
1

) · · · ( i
γ

)
0

(i
0

) · · · ( i
γ−1

)
...

. . . . . .
...

0 · · · 0
(i

0

)

⎞
⎟⎟⎟⎟⎠.

Therefore, to construct this matrix, only the first ( i
l ) with 0 ≤ l < γ + 1 are needed to

compute its coefficients.

5.3. Hybrid CPU-GPU Deployment

Now we propose a hybrid CPU-GPU deployment of the polynomial approximation
generation step. The polynomials Rt are Taylor polynomials of “high” degree δ
approximating the targeted function over τ = 225 domains Di as in Lefèvre et al.
[1998]. We interpolate them in the binomial basis using the hierarchical method
(Section 5.1) with N = 215, as we want to use the Boolean tests described in Section 4
on intervals containing 215 arguments. We choose these parameter values so that the
error analysis of the Boolean test in Lefèvre [2000] applies. As this interpolation in
the binomial basis is done only once, it is precomputed on the CPU. Then, we shift
these polynomials and truncate them to degree 2 to make the domain Di splitting at
phase 2 of the HR-case search more efficient. More formally, we have

Ptτ+i(x) = Rt(i215 + x) =
2∑

j=0

rt, j(i)
(

x
j

)
mod

(
x
3

)
.

Hence, to obtain all polynomials Ptτ+i for 0 ≤ i < τ , we have to deploy on the GPU
the computation of the consecutive evaluations of rt, j(i) for 0 ≤ i < τ and 0 ≤ j ≤ 2.

On the one hand, the tabulated difference shift is efficient, as it requires only mul-
tiprecision additions. This method is thus used in the reference CPU implementation
[Lefèvre et al. 1998]. However, this is an intrinsically sequential algorithm, which
prohibits its direct efficient deployment on the GPU. On the other hand, the straight-
forward shift is embarrassingly parallel, but it requires multiprecision multiplications
and divisions to compute the binomial coefficients and multiprecision multiplications
and additions to compute the matrix-vector products.

To benefit from the efficiency of the tabulated difference shift on the GPU, we there-
fore use a hybrid strategy that relies on both the CPU and the GPU: we compute the
shifts rt, j,u(i) = rt, j(uν + i) to form μ packets of size ν such that μν = τ . We vary u from 0
to μ− 1 and construct the polynomials rt, j,u sequentially on the CPU with the straight-
forward shift.2 All multiprecision operations on the CPU are computed efficiently by
using the GMP library [Granlund and the GMP Development Team 2010].

The μ polynomials rt, j,u are then transferred to the GPU. We run a CUDA kernel of
μ threads wherein each thread of ID u processes the polynomial rt, j,u and computes the
evaluations rt, j,u(i) with 0 ≤ i < ν using the tabulated difference shift.

Furthermore, as there are δ + 1 independent rt, j polynomials, we can run one kernel
per rt, j polynomial and overlap the GPU tabulated difference shift for the polynomial
rt, j with the CPU straightforward shift of the polynomial rt, j+1. The only algorithm
deployed on the GPU is therefore the tabulated difference shift, which is sequential

2This computation on the CPU could thus be parallelized, but the corresponding computation times are
sufficiently small in practice that this is not worthwhile.
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within each GPU thread but performed concurrently by multiple threads on multiple
polynomials rt, j,u.

As the coefficients of the considered polynomials are large, we need multiprecision
addition on the GPU. Here, only fixed-size multiprecision additions are required, as
bounds on the required precision, depending on the targeted function and the expo-
nent of the targeted domain, can be computed before compile time [Lefèvre 2000; de
Dinechin et al. 2011]. Multiprecision libraries on the GPU [Nakayama and Takahashi
2011; Lu et al. 2010] have been developed. However, we preferred to have our own
implementation of this operation for two main reasons: to use PTX (NVIDIA assembly
language) [NVIDIA 2012b] and the addc instruction to have an efficient carry propa-
gation, and to benefit from the fixed size of the multiprecision words at compile time
to unroll inner loops. As the addc instruction operates only on 32-bit words, multi-
precision words are arrays of 32-bit chunks. The multiprecision addition function is
implemented as a C++ template with the size of the multiprecision words given as a
parameter, which enables automatic generation of addition functions for each size of
fixed multiprecision word required by each union of domains Dt. As a consequence, the
inner loop on the number of chunks can easily be unrolled as the number of loop itera-
tions is known at compile time. Furthermore, to have coalesced memory accesses, the
word chunks are interleaved in global memory and loaded chunk by chunk in registers.

Finally, note that this algorithm is completely regular: there is therefore no diver-
gence issue among the GPU threads here.

6. PERFORMANCE RESULTS

In this section, we present the performance analysis of our different deployments. All
results are obtained on a server composed of one Intel Xeon X5650 hex-core processor
running at 2.67GHz, one NVIDIA Fermi C2070 GPU, and 48GB of DDR3 memory.

We compare three implementations. The first one is the sequential implementation
(named Seq.), which is Lefèvre’s reference optimized code. The second one is the parallel
implementation on the CPU (referred to as MPI), which is the sequential implementa-
tion with an MPI layer added (OpenMPI version 1.6) to distribute the domains compos-
ing a binade equally among the available CPU cores. We made the choice of MPI over
OpenMP because the processes do not communicate with each other (the computations
over each domain are independent), and MPI favors data locality. In addition, we use
a cyclic decomposition, which offers better load balancing than a block decomposition,
and we run 12 MPI processes to take advantage of the two-way SMT (simultaneous
multithreading or hyperthreading for Intel) of each core. The third implementation
(named CPU-GPU) relies on the GPU and CPU-GPU deployments presented in this
article. We searched for the optimal block sizes on the GPU and tried to increase the
number of domains computed per thread in every GPU kernel to optimize occupancy
and computation granularity. The implementations have been compiled with gcc-4.6.4
for the CPU code and nvcc (CUDA 5.0) for the GPU code. All of the following timings
are obtained for the problem of searching (53, 2−32) HR-cases of the exp function. In
other words, binary64 FP arguments for which 32 extra bits of precision during the
function evaluation do not suffice to guarantee correct rounding. The timings include
all computations and data transfers between the GPU and the CPU.

6.1. Multicore Deployments

As a first step, in Table IV, we compare the sequential implementation with our mul-
ticore one. As sequential executions are very time consuming, we run this test only
over the binade [1, 2). All MPI deployments scale very well on the multicore CPU, as
we have a parallel speedup higher than the number of cores. This is mainly because
they take advantage of the two-way SMT execution, which can partly offset the high
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Table IV. Timings Comparison (in seconds) of Sequential and
Multicore Deployments in the Binade [1, 2)

Seq. MPI Seq.
MPI

Pol. approx. 43,300.81 5,251.53 8.25
Lefèvre HR-case search 36,816.10 5,292.67 6.96
Regular HR-case search 34,039.94 4,716.97 7.22
Lef. /Reg. 1.08 1.12

Table V. Timings (in seconds) for Binades [2k, 2k+1) with k ∈ {0, 4, 7} for exp and k = −1 for sin

exp sin
[1, 2) [16, 32) [128, 256) [1/2, 1)

Pol. approx. generation
MPI 5,336.81 8,475.11 11,243.26 5,469.77

CPU-GPU 785.14 1,619.72 1,612.03 1,065.011921
speedup 6.74 5.23 6.97 5.14

Lefèvre
MPI 5,292.67 29,595.04 169,911.90 5,408.10

CPU-GPU 2,446.78 14,009.58 57,021.67 2,758.05
speedup 2.16 2.11 2.98 1.96

Regular
MPI 4,716.96 — — —

CPU-GPU 711.8 7,766.16 47,356.01 895.37
speedup* 7.44 3.81 3.59 6.04

Note: Timings labeled by “—” have been omitted because they are prohibitively long. An
asterisk (*) denotes speedups over the MPI Lefèvre HR-case search.

latency operations. These high latencies are caused by the carry propagation during the
multiprecision addition for the polynomial approximation generation and the division
instructions for the HR-case search. We also note that the regular HR-case search is
slightly faster than the Lefèvre one in both sequential (8%) and MPI (12%) executions.
This is partly due to its regularity, as removing the main conditional statement avoids
wrong branch predictions.

6.2. HR-Case Search on the GPU

As a second step, in Table V, we compare performance results of the HR-case search
deployments on the GPU with the MPI ones. We first discuss the results for the exp
function over the binades [1, 2), [16, 32), and [128, 256). The binade [1, 2) corresponds
to the case where the exp function is well approximated by a polynomial of degree 1;
the binade [128, 256) corresponds to the last entire binade before overflow, where the
exp function is hard to approximate by a polynomial of degree 1; and the binade [16, 32)
is an intermediate binade. We note here that to minimize the amount of exhaustive
search and balance the time spent in phases 2 and 3, we suitably set the number of
subdomains to consider in phase 2 for both HR-case search algorithms.

The deployment of the Lefèvre HR-case search on the GPU offers good speedups of
about 2.1× over the hex-core CPU. The fact that this speedup is constant from one
binade to the next is to be expected, as the algorithm is run with the same number of
subdomains in phase 2. In fact, here we are limited on the GPU by the irregularity of
the Lefèvre Boolean test. We cannot decrease the number of arguments to test in phase
3—which is well accelerated on the GPU—by increasing the number of subdomains,
as it would lead to lower overall performance.

The deployment of the regular HR-case search on the GPU offers very good speedups
over the MPI Lefèvre HR-case search: from 7.44× in the binade [1, 2) to 3.59× in the
binade [128, 256). Here the speedup is greater in the binade [1, 2) than in the binade
[128, 256).
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Table VI. Details on Each Phase for the Lefèvre and Regular
HR-Case Searches on the GPU

Lefèvre Regular
Arguments Time (s) Arguments Time (s)

Phase 1 9.01 · 1015 2,372.60 9.01 · 1015 583.97
Phase 2 3.19 · 1013 61.31 1.62 · 1014 91.41
Phase 3 7.65 · 1010 11.02 5.14 · 1011 35.17

(a) [1, 2)
Lefèvre Regular

Arguments Time (s) Arguments Time (s)
Phase 1 9.01 · 1015 2,750.58 9.01 · 1015 1,726.06
Phase 2 8.97 · 1015 21,162.87 9.01 · 1015 20,872.52
Phase 3 9.55 · 1014 33,106.43 9.00 · 1014 24,756.96

(b) [128, 256)

Table VII. Timings (in seconds) of the exp Function for Binades [2k, 2k+1) with −1 ≤ k ≤ 7
and of the Log Function for [1, 3.17)

Binade Exponent log –1 0 1 2 3 4 5 6 7
Pol. approx. gen. 1,293.15 1,029.84 785.14 910.58 1,240.63 1,239.36 1,619.72 2,282.22 2,891.29 2,961.42
Lef. HR-case search 13,015.16 3,287.35 2,446.78 3,104.59 3,901.89 6,768.26 14,009.58 20,175.37 31,484.65 57,021.67
Reg. HR-case search 12,566.92 1,060.72 711.8 1,061.39 1,777.57 3,691.28 7,766.16 16,359.27 29,124.52 47,356.01
Lef. / Reg. 1.04 3.10 3.44 2.93 2.20 1.83 1.80 1.23 1.08 1.20

In the binade [1, 2), phase 1 is the most time consuming on a multicore CPU. Hence,
we benefit from the regular behavior of the new HR-case Boolean test on the GPU,
which results in a speedup of 7.44× over the MPI deployment.

In the binade [128, 256), phases 2 and 3 become the critical phases, as the
Boolean test fails often. Moreover, the new regular HR-case search filters fewer
arguments than the Lefèvre HR-case search, as stated in Section 4.3.1. This results in
more arguments to test exhaustively, as detailed in Table VI(a). However, this can be
partly offset by increasing the number of subdomains in phase 2 whose regular HR-case
search is efficiently performed on the GPU. For example, we thus use 32 subdomains
for the binade [128, 256) instead of 8 for the Lefèvre HR-case search. In the end, we
therefore manage to obtain a shorter exhaustive search (see Table VI(b)) and a good
speedup of 3.59×.

We also tested our deployments on the sine function over the interval [0, π ), and the
speedups were similar to those of the exp function. In Table V, we detail the timings
over the binade [1/2, 1) and obtain speedups similar to those of the exp function over
the same binade: the regular HR-case search on the GPU offers a speedup of 6.04×
over the Lefèvre HR-case search on our hex-core CPU. These speedups thus seem to be
related to the number of approximations and the approximation error. Therefore, we
can expect very good speedups for functions that can be locally well approximated by
degree 1 polynomials.

As a third step, in Table VII, we compare both GPU deployments on the positive
domain of definition of the exp function. As the overflow occurs early in the binade
[256, 512), we do not show any timings for this binade, as they are not significant. In
addition, instead of testing many binades near 0, we test about one binade and a half
([1, 3.17)) of the inverse function (the log function), as suggested by Lefèvre [2005].

The regular Boolean test enables varying speedups up to 3.44× over the Lefèvre. This
speedup decreases as we test arguments further away from 0. As already mentioned,
this is due to the increasing truncation error on the tested degree 1 polynomials.
The best approach here might be to consider a Boolean test that uses higher degree
polynomials like those in the SLZ algorithm.
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Finally, we finish with a qualitative remark: all tested implementations return the
same HR-cases in the considered binades, and they are identical to those of Lefèvre
[Muller et al. 2009] and de Dinechin et al. [2011], which strengthens the confidence in
the validity of the computed hardness-to-round.

6.3. Polynomial Approximation Generation on the GPU

Now we detail the performance of the polynomial approximation generation. First, we
recall that the cost of generating the Taylor approximations is negligible, although they
are generated with Maple [Maplesoft 2016]. In Table V, we show performance results
of the polynomial approximation generation step over three chosen binades. We can
observe that the hybrid CPU-GPU deployment greatly takes advantage of the GPU, as
all threads perform independent computations and the control flow is perfectly regular
among the GPU threads. It thus offers good speedups up to 55.15× over the one CPU
core execution and up to 6.97× over the six-core execution.

We can also observe in Table VII that the timings of the CPU-GPU polynomial
approximation generation increase more slowly compared to the HR-case search ones,
even though we use longer multiprecision words in the large binades (the maximum
coefficient sizes vary from 320 bits for the binade [1, 2) to 448 for the binade [128, 256))
and the highest polynomial degree (max j (deg rt, j(x)) vary from 6 for the binade [1, 2) to
10 for the binade [128, 256)). This makes the relative amount of time spent in this step
vary from 5.9% at least to 52.4% at most. Hence, when the function is well approximated
by a degree 1 polynomial, the HR-case search is fast and requires about half of the global
time. In the opposite situation, the HR-case search becomes by far the bottleneck, and
the time spent in the polynomial approximation generation is negligible.

7. CONCLUSION AND FUTURE WORK

In this article, we have proposed a new algorithm based on continued fraction expan-
sions for HR-case searches. This new algorithm improves the Lefèvre HR-case search
algorithm by strongly reducing loop and branch divergence, which is a problem in-
herent to GPUs because of their partial SIMD architecture. We have also proposed
an efficient GPU deployment of these two HR-case search algorithms and a hybrid
CPU-GPU deployment of the generation of polynomial approximations.

When searching for HR-cases of the exp function in double precision, these deploy-
ments enable an overall speedup of up to 53.4× on one GPU over a sequential execution
on one CPU core and a speedup of up to 7.1× on one GPU over one hex-core CPU.

In the future, we plan to investigate whether the regular HR-case search can benefit
from other SIMD architectures like vector units (SSE, AVX, . . . ) on multicore CPU
and Intel Xeon Phi architectures. This will require an OpenCL [Khronos Group 2011]
implementation and an effective automatic vectorization by the OpenCL compiler.

We also plan to provide formal proofs of the deployed algorithms. This task is eased
by the continued fraction expansion formalism and would enable a validated gener-
ation of the hardness-to-round, which is necessary to improve the confidence in the
produced results. This is desirable before computing the hardness-to-round of all func-
tions recommended by IEEE standard 754.

Finally, it is our hope to tackle the TMD for quadruple precision by deploying on
the GPU the SLZ algorithm, which tests the existence of HR-cases with higher-degree
polynomials. This algorithm heavily relies on the use of the LLL algorithm. The de-
ployment of this algorithm on the GPU is therefore far from trivial if one wants to
obtain good performance. Porting the LLL algorithm to the GPU will be the next step
of this work.
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