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Abstract—Compensated algorithms consist in computing the rounding errors of individual operations and then adding them later on to
the computed result. This makes it possible to increase the accuracy of the computed result efficiently. Computing the rounding error of
an individual operation is possible through the use of a so-called error-free transformation. In this article, we show that it is possible to
use compensated algorithms for having tight interval inclusions. We study compensated algorithms for summation, dot product and
polynomial evaluation. We prove that the use of directed rounding makes it possible to get narrow inclusions with compensated
algorithms. This is due to the fact that error-free transformations are no more exact but still sufficiently accurate to improve the
numerical quality of results.

Index Terms—Interval arithmetic, directed rounding, compensated algorithms, error-free transformations, floating-point arithmetic, numerical

validation, rounding errors, summation algorithms, dot product, Horner scheme
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1 INTRODUCTION

IN June 2018, researchers at the US Department of Energys
Oak Ridge National Laboratory broke the exascale barrier,

achieving on the Summit supercomputer1 a peak throughput
of 1.88 exaops (i.e., 1:88 1018 arithmetic operations per sec-
ond). Unfortunately, with exascale computing, or more gen-
erally with high performance computing, a large number of
rounding errors may be generated. Indeed, nearly all float-
ing-point operations imply a small roundingwhich can accu-
mulate along the computation and finally an incorrect result
may be produced. As a consequence, it is crucial to propose
methods and tools for numerical validation and accurate
computation.

To improve the numerical quality of results, one can
increase the working precision. In addition to the widely
used binary32 and binary64 formats, the IEEE 754-2008 stan-
dard [1] defines the binary128 format, also called quadruple
precision, that is implemented in compilers such as the GNU
compiler gcc and the Intel compiler icc. Moreover arbitrary
precision libraries exist: one can cite ARPREC [2] and
MPFR [3]. The computing precision can also be extended
thanks to expansions, unevaluated sums of standard
floating-point numbers. The QD package [4] provides the
double-double and the quad-double data types, that consist of
respectively two and four binary64 floating-point numbers.

One can also use arbitrary length expansions [5], [6], [7]. If a
simple enough computation is performed, its accuracy can
be improved thanks to compensated algorithms [8], [9], [10].
These algorithms are based on error-free transformations
(EFTs) that make it possible to compute the rounding errors
of some elementary operations like addition and multiplica-
tion exactly.

Interval arithmetic [11], [12] is a well known approach to
control the validity of numerical results. It briefly consists in
performing floating-point operations on intervals instead of
scalars. These operations give a 100 percent-certain result,
represented as an interval containing the exact result. The
main advantage of this approach lies in the guaranteed error
bounds it provides.

In this paper we show how to compute tight interval
inclusions with compensated algorithms. To obtain guaran-
teed interval bounds, directed rounding should be used.
However EFTs are intended to be used with rounding to
nearest. Therefore we study the behaviour of EFTs with
directed rounding. In this paper we show that EFTs exe-
cuted with directed rounding provide guaranteed bounds
on the results of additions and multiplications. We complete
results established in [13], [14] on the behaviour with
directed rounding of compensated algorithms based on
these EFTs. Then we show that, thanks to compensated
algorithms executed with directed rounding, tight interval
inclusions can be computed for summation, dot product,
and polynomial evaluation with Horner scheme.

The outline of this article is as follows. In Section 2 we
give some definitions and notations used in the sequel. In
Section 3 we show the impact of a directed rounding mode
on EFTs and prove that guaranteed interval bounds can be
obtained thanks to EFTs executed with directed rounding.
In Sections 4, 5, and 6 we study the behaviour with directed
rounding of compensated algorithms for respectively sum-
mation, dot product, and polynomial evaluation and show
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how they can provide narrow inclusions. Numerical experi-
ments carried out using INTLAB [15] are presented in Sec-
tion 7. Finally, conclusions and perspectives on this work
are given in Section 8.

2 DEFINITIONS AND NOTATIONS

In this paper, we assume toworkwith a binary floating-point
arithmetic adhering to IEEE 754-2008 floating-point stan-
dard [1] and we suppose that no overflow occurs. The error
bounds for the compensated summation that are presented
in Section 4 remain valid in the presence of underflow. For
the other compensated algorithms considered in this article
(dot product and Horner scheme) we assume that no under-
flow occurs so as to present simpler error bounds.

The set of floating-point numbers is denoted by F, the
bound on relative error for round to nearest by u. With the
IEEE 754 binary64 format (double precision), we have
u ¼ 2#53 and with the binary32 format (single precision),
u ¼ 2#24.

We denote by fl$ð&Þ the result of a floating-point compu-
tation, where all operations inside parentheses are done in
floating-point working precision with a directed rounding
(that is to say toward #1 or þ1). Floating-point operations
in IEEE 754 satisfy [16]

For ) ¼ fþ;#g, 9"1 2 R, "2 2 R such that

fl$ða ) bÞ ¼ ða ) bÞð1þ "1Þ ¼ ða ) bÞ=ð1þ "2Þ with j"nj * 2u:

As a consequence, for ) ¼ fþ;#g,

ja ) b# fl$ða ) bÞj * 2uja ) bj and
ja ) b# fl$ða ) bÞj * 2ujfl$ða ) bÞj:

(1)

We use standard notations for error estimations. The quan-
tities gn are defined as usual [16] by

gnðuÞ :¼
nu

1# nu
for n 2 N;

where it is implicitly assumed that nu < 1.

Remark 1.We give the following relations on gn, that will be
frequently used in the sequel of the paper. For any non-
negative integer n, nu * gnðuÞ; gnðuÞ * gnþ1ðuÞ; ð1þ
uÞgn ðuÞ * gnþ1ðuÞ; 2ðnþ 1Þuð1þ g2nðuÞÞ * g2ðnþ1ÞðuÞ.

Remark 2. Recently, it has been shown that classic Wilkin-
son-type error bounds for summation, dot product and
polynomial evaluation [17], [18], [19] can be slightly
improved by replacing the factor gnðuÞ by nuwith no con-
dition on n (for summation, dot product and Horner
scheme). It is likely that the error bounds given in this
paper could also be slightly improved by replacing all the
gnðuÞ by nu. However the proofs for improving the
boundswould bemore complicated and tricky, andwould
not be useful for this paper. We just aim at showing that
the relative accuracy is in OðuÞ for classic algorithms
and in Oðu2Þ for compensated algorithms with directed
roundings.

3 ERROR-FREE TRANSFORMATIONS WITH

DIRECTED ROUNDING

3.1 Error-Free Transformations for Addition
EFTs exist for the sum of two floating-point numbers with
rounding to nearest: FastTwoSum [20], given as Algorithm 1,
which requires a test and 3 floating-point operations, and
TwoSum [21], given as Algorithm 2, which requires 6 float-
ing-point operations. These algorithms compute both the
floating-point sum x of two numbers a and b and the associ-
ated rounding error y such that xþ y ¼ aþ b when using
rounding to the nearest. This is no longer true with directed
rounding. Indeed, with directed rounding, the rounding
error may not be exactly representable (see [22] page 125).

We will study the behaviour of FastTwoSum and TwoSum
with directed rounding. In the rest of this section, any arith-
metic operation is rounded using the fl$ function defined in
Section 2. In the Propositions presented in this section, and
also in Section 4.2, we assume underflowmay occur because,
in this case, additions or subtractions generate no rounding
error if subnormal numbers are available [23].

3.1.1 FastTwoSum with Directed Rounding

With rounding to nearest, the FastTwoSum EFT, given in
Algorithm 1, computes the floating-point sum x of two num-
bers a and b and its associated rounding error y.

Algorithm 1. Error-Free Transformation for the Sum of
two Floating-Point Numbers with Rounding to Nearest

function ½x; y, = FastTwoSumða; bÞ
1: if jbj > jaj then
2: exchange a and b
3: end if
4: x aþ b
5: z x# a
6: y b# z

In [24], it is shown that the floating-point number z in
Algorithm 1 is computed exactly with directed rounding.
This property is recalled as Proposition 3.1.

Proposition 3.1. The floating-point number z provided by Algo-
rithm 1 using directed rounding is computed exactly, i.e.,
z ¼ x# a.

In general the correction y computed by Algorithm 1
using directed rounding is different from the rounding error
e on the sum of a and b. In Proposition 3.2, we bound the dif-
ference between e and y.

Proposition 3.2. Let x and y be the floating-point addition of a
and b and the correction both computed by Algorithm 1 using
directed rounding. Let e be the error on x: aþ b ¼ xþ e. Then

je# yj * 4u2jaþ bj and je# yj * 4u2jxj:

Proof. As e ¼ aþ b# x ¼ aþ b# fl$ðaþ bÞ, from the
inequalities (1), we have

jej * 2ujaþ bj and jej * 2ujxj: (2)
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Now let d denote the rounding error in y, so that

b# z ¼ yþ d: (3)

Using the first of the inequalities (1), we have

jdj * 2ujb# zj: (4)

From Proposition 3.1, we know that z ¼ x# a exactly,
and thus b# z ¼ b# ðx# aÞ ¼ aþ b# x ¼ e. Therefore

je# yj ¼ jðb# zÞ # yj ase ¼ b# z;

¼ jdj from ð3Þ;
* 2ujej from (4) and e ¼ b# z:

Combining this inequality with those in (2) gives the
claimed result. tu

In Proposition 3.3 we establish a relation between the
error e and the correction y if Algorithm 1 is executed with
directed rounding.

Proposition 3.3. Let x and y be the floating-point addition of a
and b and the correction both computed by Algorithm 1 using
directed rounding. Let e be the error on x: aþ b ¼ xþ e.

! If computations are performed with rounding toward
þ1 then e * y.

! If computations are performed with rounding toward
#1 then y * e.

Proof. We always have by definition aþ b ¼ xþ e. From
Proposition 3.2, it follows that y ¼ fl$ðeÞ. So if we use
rounding toward þ1 then e * y and if we use rounding
toward #1 then y * e. tu

3.1.2 TwoSum with Directed Rounding

With rounding to nearest, the TwoSum EFT, given in Algo-
rithm 2, computes the floating-point sum x of two numbers
a and b and its associated rounding error y.

Algorithm 2. Error-Free Transformation for the Sum of
two Floating-Point Numbers with Rounding to Nearest

function ½x; y, = TwoSumða; bÞ
1: x aþ b
2: d x# a
3: f  b# d
4: g x# d
5: h a# g
6: y f þ h

We recall here a result of [25].

Theorem 3.4 ([25, Thm. 4.1]). Let x and y be the floating-point
addition of a and b and the correction both computed by Algo-
rithm 2 using directed rounding. Let e be the error on x:
aþ b ¼ xþ e. Then

je# yj * 4u2jaþ bj and je# yj * 4u2jxj:

Proposition 3.6 has been established using Sterbenz’s
lemma [26] which is recalled as Lemma 3.5.

Lemma 3.5 (Sterbenz). In a floating-point system with sub-
normal numbers available, if c and d are finite floating-point
numbers such that d=2 * c * 2d, then c# d is exactly
representable.

In Proposition 3.6 we establish a relation between the
error e and the correction y if Algorithm 2 is executed with
directed rounding.

Proposition 3.6. Let x and y be the floating-point addition of a
and b and the correction both computed by Algorithm 2 using
directed rounding. Let e be the error onx: aþ b ¼ xþ e.

! If computations are performed with rounding toward
þ1 then e * y.

! If computations are performed with rounding toward
#1 then y * e.

Proof. Without loss of generality, we can assume that b - 0.
We will separate the proof into three different cases:
b * jaj, #b < a * #b=2 and #b=2 < a < b.

! case 1: b * jaj
In this case, the lines 1, 2 and 3 correspond exactly
to FastTwoSum (Algorithm 1). It follows that
d ¼ x# a and so f ¼ fl$ðaþ b# xÞ, g ¼ a, h ¼ 0
and y ¼ f . As a consequence, y ¼ fl$ðeÞ. So if we
use rounding toward þ1 then e * y and if we
use rounding toward #1 then y * e.

! case 2: #b < a * #b=2
Using Sterbenz’s lemma, it follows that x ¼ aþ b
and so d ¼ b, f ¼ 0, g ¼ a, h ¼ 0 and y ¼ 0. So in
this case, we have e ¼ y ¼ 0.

! case 3: #b=2 < a < b
It follows from [25, Thm 4.1] that computations in
lines 3 and 4 are exact due to Sterbenz’s lemma.
As a consequence, f ¼ b# d and g ¼ x# d. Let us
now assume we use rounding toward þ1. As a
consequence, f þ h * y and a# g * h so f þ a#
g * y. Using the fact that f ¼ b# d and g ¼ x# d,
we obtain that e ¼ aþ b# x * y.

Let us now assume we use rounding toward
#1. We have y * f þ h and h * a# g so y * fþ
a# g. Using the fact that f ¼ b# d and g ¼ x# d,
we obtain that y * aþ b# x ¼ e.

This concludes the proof. tu

3.2 Error-Free Transformation for Multiplication
Based on FMA

The Fused-Multiply-and-Add (FMA) is an operator that ena-
bles a floating-point multiplication followed by an addition
to be performed as a single floating-point operation. For
a; b; c 2 F, FMAða; b; cÞ is an approximation of a. bþ c 2 R
that satisfies, if no underflow occurs:

FMAða; b; cÞ ¼ ða. bþ cÞð1þ "1Þ ¼ ða. bþ cÞ=ð1þ "2Þ;

where j"nj * u with rounding to nearest and j"nj * 2u with
directed rounding.

The FMA operation is supported by numerous processors
such as AMD or Intel processors starting with respectively
the Bulldozer or the Haswell architecture and by the Intel
Xeon Phi coprocessor. It is also supported by AMD and
NVidia GPUs (Graphics Processing Units) since 2010.
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With any rounding mode, the TwoProdFMA EFT, given in
Algorithm 3, computes both the floating-point product x of
two numbers a and b and the associated rounding error y,
provided that no underflow occurs. If this property holds,
the floating-point numbers x and y computed by the
TwoProdFMA algorithm satisfy: xþ y ¼ a. b.

Algorithm 3. Error-Free Transformation for the Product
of two Floating-Point Numbers using an FMA

function ½x; y, = TwoProdFMAða; bÞ
1: x a. b
2: y FMAða; b;#xÞ

4 ACCURATE SUMMATION

In this section we recall how to obtain interval inclusions for
summation using the classical iterative algorithm. Then we
present how to compute narrow inclusions thanks to com-
pensated algorithms.

4.1 Classic Summation
The classic algorithm for summation is the iterative
Algorithm 4.

Algorithm 4. Summation of n Floating-Point Numbers
p ¼ fpig
function res = SumðpÞ
1: s1  p1
2: for i ¼ 2 to n do
3: si  si#1 þ pi
4: end for
5: res sn

The error generated by Algorithm 4 with directed round-
ing is given in [16] and is recalled in Proposition 4.1.

Proposition 4.1. Let us suppose Algorithm 4 is applied to float-
ing-point numbers pi 2 F, 1 * i * n. Let s :¼

P
pi and

S :¼
P
jpij.

With directed rounding, if nu < 1
2, then

jres# sj * gn#1ð2uÞS: (5)

In Corollary 4.2 Equation (5) is rewritten in terms of the
condition number on

P
pi:

cond
X

pi
! "

¼ S

jsj :

Corollary 4.2. With directed rounding, if nu < 1
2, the result

res of Algorithm 4 satisfies

jres# sj
jsj * gn#1ð2uÞcond

X
pi

! "
:

Because gn#1ð2uÞ / 2ðn# 1Þu as nu < 1=2, the bound
for the relative error is essentially 2nu times the condition
number. If the condition number is large (greater than 1=u)
then the result of Algorithm 4 has no more correct digits.

Compensated algorithms, that evaluate more accurately the
sum of floating-point numbers, are presented in Section 4.2.

Algorithm 5 shows how to compute an enclosure ofPn
i¼1 pi. It is given with the MATLAB syntax. With the argu-

ment #1 (resp. 1), the setround function enables one to
perform the next instructions with rounding to #1 (resp.
þ1). The same algorithm could also be written in a pro-
gramming language sush as C++ using the fesetround

function to change the rounding mode.

Algorithm 5. Computation of Interval Bounds Sinf and
Ssupwith the Classic Summation Algorithm Sum

setround(-1)

Sinf = Sum(p)

setround(1)

Ssup = Sum(p)

As shown for example in [27], we have the following
enclosure.

Proposition 4.3. Let p ¼ fpig be a vector of n floating-point
numbers. If Sinf and Ssup are computed using Algorithm 5,
then we have

Sinf *
Xn

i¼1

pi * Ssup:

4.2 Compensated Summation with Directed
Rounding

A compensated algorithm to evaluate accurately the sum of
n floating-point numbers is presented as Algorithm 6
(FastCompSum) [28], [29]. This sum is corrected thanks to an
error-free transformation used for each individual summa-
tion. Although FastTwoSum is called in Algorithm 6, with
rounding to nearest the same result can be obtained using
another error-free transformation (TwoSum).

Algorithm 6. Compensated Summation of n Floating-
Point Numbers p ¼ fpig using FastTwoSum

function res = FastCompSumðpÞ
1: p1  p1
2: s1  0
3: for i ¼ 2 to n do
4: ½pi; qi, FastTwoSumðpi#1; piÞ
5: si  si#1 þ qi
6: end for
7: res pn þ sn

With directed rounding, Algorithm 1 (FastTwoSum) is not
an error-free transformation. The error generated by Algo-
rithm 6with directed rounding is given in [13] and is recalled
in Proposition 4.4.

Proposition 4.4. Let us suppose Algorithm FastCompSum is
applied, with directed rounding, to floating-point numbers pi 2
F , 1 * i * n. Let s :¼

P
pi and S :¼

P
jpij. If nu < 1

2, then

jres# sj * 2ujsjþ 2ð1þ 2uÞg2
nð2uÞS: (6)

From Proposition 4.4, a bound for the relative error on
the result of Algorithm 6 (FastCompSum) obtained with
directed rounding is deduced in Corollary 4.5.
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Corollary 4.5. With directed rounding, if nu < 1
2, then, the

result res of Algorithm 6 (FastCompSum) satisfies

jres# sj
jsj

* 2uþ 2ð1þ 2uÞg2
nð2uÞcond

X
pi

! "
:

From Corollary 4.5, because gnð2uÞ / 2nu, the relative
error bound is essentially ðnuÞ2 times the condition number
plus the unavoidable rounding 2u aswe round to theworking
precision. As a remark, we could avoid this ”unavoidable”
rounding by keeping the result in two working precision
numbers until a later stage of the computation. The computa-
tion is carried out almost as with twice the working precision
(u2).

Algorithm 7 shows how to compute with MATLAB the
FastCompSum algorithm with rounding to #1, and then
with rounding to þ1.

Algorithm 7. Computation of Interval Bounds Sinf and
Ssup with the Compensated Summation Algorithm
FastCompSum

setround(-1)

Sinf = FastCompSum(p)

setround(1)

Ssup = FastCompSum(p)

In Proposition 4.6 we show that Algorithm 7 provides an
enclosure of

Pn
i¼1 pi. Thanks to the FastCompSum algorithm,

the results provided by Algorithm 7 are almost as accurate
as if the classical summation was computed in twice the
working precision.

Proposition 4.6. Let p ¼ fpig be a vector of n floating-point
numbers. If Sinf and Ssup are computed using Algorithm 7,
then we have

Sinf *
Xn

i¼1

pi * Ssup:

Proof. Let ei be the error on the floating-point addition of
pi#1 and pi (i ¼ 2; :::; n). We know that s ¼

Pn
i¼1 pi ¼ pn þPn

i¼1 ei where pi þ ei ¼ pi#1 þ pi.

! Let us assume computations are performed with
rounding toward þ1.
From Proposition 3.2, it follows that ei * qi. As a
consequence, we have s * pn þ

Pn
i¼1 qi. As we

use rounding toward þ1, we have
Pn

i¼1 qi * sn

so s * pn þ sn. As we always use rounding
toward þ1, we also have s * res :¼ Ssup.

! Let us assume computations are performed with
rounding toward #1.
From Proposition 3.2, it follows that qi * ei. As a
consequence, we have pn þ

Pn
i¼1 qi * s. As we

use rounding toward #1, we have sn *
Pn

i¼1 qi
so pn þ sn * s. As we always use rounding
toward #1, we also have Sinf :¼ res * s. tu

A compensated summation algorithm based on TwoSum
instead of FastTwoSum will give similar results that is to say
the same error bounds, propositions, and proofs.

5 ACCURATE DOT PRODUCT

In this section we recall how to obtain inclusions of dot prod-
ucts using the classic dot product algorithm. Then we show
that tighter inclusions can be computed using compensated
dot product algorithms executed with directed rounding. In
this section, we assume that no underflow occurs.

5.1 Classic dot Product
The classic algorithm for computing a dot product is
Algorithm 8.

Algorithm 8. Classic dot Product of x ¼ fxig and y ¼
fyig, 1 * i * n

function res = Dotðx; yÞ
1: s1  x1 . y1
2: for i ¼ 2 to n do
3: si  xi . yi þ si#1

4: end for
5: res sn

The error generated by Algorithm 8 with directed round-
ing is recalled in Proposition 5.1.

Proposition 5.1. Let floating point numbers xi; yi 2 F; 1 *
i * n, be given and denote by res 2 F the result computed by
Algorithm 8 ðDotÞ. With directed rounding, if nu < 1

2, we
have

jres# xTyj * gnð2uÞjxT jjyj: (7)

Proof. The proof can be found in Higham [16, p.63]. tu

We can rewrite the previous inequality in terms of the
condition number of the dot product defined by

condðxTyÞ ¼ 2
jxjT jyj
jxTyj :

Corollary 5.2. With directed rounding, if nu < 1
2, the result

res of Algorithm 8 satisfies

jres# xTyj
jxTyj * 1

2
gnð2uÞcondðxTyÞ:

Because gnð2uÞ / 2nu as nu < 1=2, the bound for the
relative error is essentially nu times the condition number.

Algorithm 9 shows how to compute the Dot algorithm
with rounding to #1, and then with rounding to þ1.

Algorithm 9. Computation of Interval Bounds Dinf and
Dsupwith the Classic dot Product Algorithm Dot

setround(-1)

Dinf = Dot(x,y)

setround(1)

Dsup = Dot(x,y)

As shown for example in [27], we have the following
enclosure.

Proposition 5.3. Let floating-point numbers xi; yi 2 F; 1 * i *
n, be given. If Dinf and Dsup are computed using Algorithm 9,
then we have

Dinf * xTy * Dsup:
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5.2 Compensated dot Product with Directed
Rounding

A compensated dot product algorithm [9] that uses the
TwoProdFMA EFT is recalled as Algorithm 10 (CompDot).

Algorithm 10. Compensated dot Product of x ¼ fxig and
y ¼ fyig, 1 * i * n

function res=CompDotðx; yÞ
1: ½p1; s1, TwoProdFMAðx1; y1Þ
2: for i ¼ 2 to n do
3: ½hi; ri, TwoProdFMAðxi; yiÞ
4: ½pi; qi, TwoSumðpi#1; hiÞ
5: si  si#1 þ ðqi þ riÞ
6: end for
7: res pn þ sn

A bound for the absolute error on the result res of Algo-
rithm 10 with directed rounding is given in Proposition 5.4.

Proposition 5.4. Let floating-point numbers xi; yi 2 F; 1 *
i * n, be given and denote by res 2 F the result computed by
Algorithm 10 with directed rounding. If ðnþ 1Þu < 1

2, then,

jres# xTyj * 2ujxTyjþ 2g2nþ1ð2uÞjx
T jjyj:

Proof. In [14], a similar algorithm has been analyzed with
directed rounding, except FastTwoSum was used instead
of TwoSum here. Because the error bounds are the same in
Proposition 3.2 and Theorem 3.4, the error bound in Prop-
osition 5.4 is the same as in [14]. tu

From Proposition 5.4, a bound for the relative error on
the result of Algorithm 10 obtained with directed rounding
is deduced in Corollary 5.5.

Corollary 5.5. With directed rounding, if ðnþ 1Þu < 1
2, then,

the result res of Algorithm 10 satisfies

jres# xTyj
jxTyj * 2uþ g2

nþ1ð2uÞcond xTy
# $

:

From Corollary 5.5, the relative error bound on the result
of Algorithm 10 computed with directed rounding is essen-
tially ðnuÞ2 times the condition number plus the rounding
2u due to the working precision. The result obtained with
Algorithm 10 is almost as accurate as if the classic dot prod-
uct was computed in twice the working precision.

Algorithm 11 shows how to compute with MATLAB the
CompDot algorithm with rounding to #1, and then with
rounding to þ1.

Algorithm 11. Computation of Interval Bounds Dinf and
Dsup with the Compensated dot Product Algorithm
CompDot

setround(-1)

Dinf = CompDot(x,y)

setround(1)

Dsup = CompDot(x,y)

In Proposition 5.6 we show that Algorithm 11 provides
an enclosure of the dot product.

Proposition 5.6. Let floating-point numbers xi; yi 2 F; 1 *
i * n, be given. If Dinf and Dsup are computed using Algo-
rithm 11, then we have

Dinf * xTy * Dsup:

Proof. Let ei be the error on the floating-point addition of
pi#1 and hi (i ¼ 2; :::; n). We know that xTy ¼ pn þ s1þPn

i¼2ðei þ riÞwhere pi þ ei ¼ pi#1 þ hi (see Proposition 4.5
in [14]).

! Let us assume computations are performed with
rounding toward þ1.
From Proposition 3.6, it follows that ei * qi. As a

consequence, we have xTy * pn þ s1 þ
Pn

i¼2ðqiþ
riÞ. As we use rounding toward þ1, we have
s1 þ

Pn
i¼2ðqi þ riÞ * sn so xTy * pn þ sn. As we

always use rounding toward þ1, we also have
xTy * res :¼ Dsup.

! Let us assume computations are performed with
rounding toward #1.
From Proposition 3.6, it follows that qi * ei. As a
consequence, we have pn þ s1 þ

Pn
i¼2ðqi þ riÞ *

xTy. As we use rounding toward #1, we have
sn * s1 þ

Pn
i¼2ðqi þ riÞ so pn þ sn * xTy. As we

always use rounding toward #1, we also have
Dinf :¼ res * xTy. tu

6 ACCURATE HORNER SCHEME

In this section we recall how to obtain inclusions of a poly-
nomial evaluation using the classic Horner scheme. Then
we show that tighter inclusions can be computed using a
compensated Horner scheme executed with directed round-
ing. In this section, we assume that no underflow occurs.

6.1 Classic Horner Scheme
The classical method for evaluating a polynomial

pðxÞ ¼
Xn

i¼0

aix
i;

is the Horner scheme which consists of Algorithm 12.

Algorithm 12. Polynomial Evaluation with Horner’s
Scheme

function res ¼ Hornerðp; xÞ
1: sn  an
2: for i ¼ n# 1 downto 0 do
3: si  siþ1 . xþ ai
4: end for
5: res s0

Whatever the rounding mode, a forward error bound on
the result of Algorithm 12 is (see [16, p. 95]):

jpðxÞ # resj * g2nð2uÞ
Xn

i¼0

jaijjxji ¼ g2nð2uÞepðjxjÞ;

where epðxÞ ¼
Pn

i¼0 jaijxi. The relative error on the result can
be expressed in terms of the condition number of the poly-
nomial evaluation defined by
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condðp; xÞ ¼
Pn

i¼0 jaijjxj
i

jpðxÞj ¼
epðjxjÞ
jpðxÞj : (8)

Thus we have

jpðxÞ # resj
jpðxÞj * g2nð2uÞcondðp; xÞ:

If an FMA instruction is available, then the statement
si  siþ1 . xþ ai in Algorithm 12 can be rewritten as si  
FMAðsiþ1; x; aiÞ which slightly improves the error bound
(see [16]).

Algorithm 13 presents how to compute an enclosure of
pðxÞ if x - 0. If x * 0, Hornerð"p;#xÞ is computed with
"pðxÞ ¼

Pn
i¼0 aið#1Þixi.

Algorithm 13. Computation of Interval Bounds Einf and
Esupwith the Classic Horner Scheme for x - 0

setround(-1)

Einf = Horner(p,x)

setround(1)

Esup = Horner(p,x)

As for dot product and summation with directed round-
ing ([27]), the following enclosure holds.

Proposition 6.1. Consider a polynomial p of degree n with float-
ing-point coefficients, and a floating-point value x - 0. If Einf
and Esup are computed using Algorithm 13, then

Einf * pðxÞ * Esup:

6.2 Compensated Horner Scheme with Directed
Rounding

A compensated Horner scheme [10], [30] is recalled as
Algorithm 14 (CompHorner).

Algorithm 14. Polynomial Evaluation with a Compen-
sated Horner Scheme

function res ¼ CompHornerðp; xÞ
1: sn  an
2: rn  0
3: for i ¼ n# 1 down to 0 do
4: ½pi;pi, TwoProdFMAðsiþ1; xÞ
5: ½si; si, FastTwoSumðpi; aiÞ
6: ri  riþ1 . xþ ðpi þ siÞ
7: end for
8: res s0 þ r0

The error generated by Algorithm 14 with directed
rounding is given in [14] and is recalled in Proposition 6.2.

Proposition 6.2. Consider a polynomial p of degree n with float-
ing-point coefficients, and a floating-point value x. With
directed rounding, the forward error in the compensated Horner
algorithm is such that
jCompHornerðp; xÞ # pðxÞj * 2ujpðxÞjþ 2g2nþ1ð2uÞ

2epðjxjÞ:

Combining this error bound with the condition num-
ber (8) for the polynomial evaluation gives

jCompHornerðp; xÞ # pðxÞj
jpðxÞj * 2uþ 2g2nþ1ð2uÞ

2condðp; xÞ:

Because g2nþ1ð2uÞ / 4nu as nu < 1=2, the bound for the
relative error of the computed result is essentially ðnuÞ2
times the condition number of the polynomial evaluation,
plus the unavoidable term 2u for rounding the result to the
working precision. The computed result is almost as accu-
rate as if it was computed by the classic Horner algorithm
with twice the working precision, and then rounded to the
working precision.

Algorithm 15 presents how to compute an enclosure of
pðxÞ if x - 0. Like with Algorithm 13, if x * 0, CompHorner
ð"p;#xÞ is computed with "pðxÞ ¼

Pn
i¼0 aið#1Þixi.

Algorithm 15. Computation of Interval Bounds Einf and
Esup with the Compensated Horner Scheme CompHorner
for x - 0

setround(-1)

Einf = CompHorner(p,x)

setround(1)

Esup = CompHorner(p,x)

In Proposition 6.3 we show that Algorithm 15 provides
an enclosure of pðxÞ. The results of Algorithm 15 are almost
as accurate as if the classical Horner scheme was computed
in twice the working precision.

Proposition 6.3. Consider a polynomial p of degree n with float-
ing-point coefficients, and a floating-point value x - 0. If Einf
and Esup are computed using Algorithm 15, then

Einf * pðxÞ * Esup:

Proof. We analyze the impact of a directed rounding mode
on Algorithm 14 (CompHorner).

Let ti be the rounding error in the floating-point addi-
tion of pi and ai (ti is not necessarily a floating-point
number):

si þ ti ¼ pi þ ai:

It follows that siþ1 . x ¼ pi þ pi and pi þ ai ¼ si þ ti with
jti # sij * 2ujtij. As a consequence, we have

si ¼ siþ1 . xþ ai # pi # ti for i ¼ 0; . . . ; n# 1:

By induction, we deduce that

pðxÞ ¼ s0 þ ppðxÞ þ ptðxÞ;

with

s0 ¼ fl$ðpðxÞÞ; ppðxÞ ¼
Xn#1

i¼0

pix
i; and ptðxÞ ¼

Xn#1

i¼0

tix
i:

! Let us assume computations are performed with
rounding toward þ1.

From Proposition 3.2, it follows that ti * si. As
a consequence, we have
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pðxÞ * s0 þ
Xn#1

i¼0

pix
i þ
Xn#1

i¼0

six
i:

As we use rounding toward þ1, we have pðxÞ *
s0 þ r0 ¼ res :¼ Esup.

! Let us assume computations are performed with
rounding toward #1.

From Proposition 3.2, it follows that si * ti. As
a consequence, we have

s0 þ
Xn#1

i¼0

pix
i þ
Xn#1

i¼0

six
i * pðxÞ:

As we use rounding toward#1, we have Einf :¼
res ¼ s0 þ r0 * pðxÞ. tu

As a remark, the same result will be obtained if
FastTwoSum is replaced by TwoSum in Algorithm 14.

7 NUMERICAL RESULTS

In this section, we present results computed with interval
arithmetic using the classic and the compensated algorithms
for summation, dot product and Horner scheme. With the
compensated algorithms, the interval bounds have been
computed as described in the previous sections. The numeri-
cal experiments have been carried out on a laptop with an
Intel Core i5 processor at 2.9 GHz with 16 Gb of RAM. We
usedMATLAB R2016bwith INTLAB v10 [15]. The computa-
tion has been performedwith the binary64 (double precision)
format of the IEEE 754-2008 standard [1]. Figs. 1, 2, and 3 dis-
play the radius over themidpoint of interval results obtained
for various condition numbers.

From Figs. 1, 2, and 3, with the classic algorithms, if the
condition number increases, the radius over the midpoint of
the computed interval also increases, which means that the
accuracy of the result decreases. If the condition number
reaches about 1015, the computed result has no more correct
digits. With the compensated algorithms, if the condition
number remains less than about 1015, the numerical quality
of the computed result is very satisfactory. If the condition
number increases from about 1015 to 1030, the numerical
quality of the result decreases. If the condition number
reaches about 1030, the result has no more correct digits. As
expected, the interval results obtainedwith the compensated
algorithms are almost as accurate as if they were computed
in twice the working precision. Tight interval inclusions
have been computed thanks to compensated algorithms.

8 CONCLUSION AND PERSPECTIVES

In this paper we have shown that tight inclusions can
be computed for summation, dot product, and polynomial
evaluation thanks to compensated algorithms executed with
directed rounding. The results obtained are almost as accu-
rate as if they were computed using twice the working preci-
sion. The approach chosen in this paper consists in executing
the compensated algorithms entirely with rounding toward
#1, and then with rounding toward þ1. An advantage of

Fig. 1. Classic and compensated summation computed with interval
arithmetic.

Fig. 2. Classic and compensated dot product computed with interval
arithmetic.

Fig. 3. Classic and compensated Horner scheme computed with interval
arithmetic.
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this approach lies in the fact that the original compensated
algorithms can be used, possibly from a library usually exe-
cutedwith rounding to nearest.

Another approach would consist in computing the results
once with rounding to nearest and the corrections with
rounding toward #1, and then with rounding toward þ1.
This approach would be more memory consuming than the
approach presented in this paper. However it would per-
form better in terms of execution time. It would be interest-
ing to compare the two approaches.

K-fold compensated algorithms enable one to compute
summation and dot product as in K-fold precision [9].
Priest’s EFT [8] for the addition and TwoProdFMA both com-
pute the generated rounding error whatever the rounding
mode. The impact of a directed rounding mode on K-fold
compensated algorithms based on these EFTs has been
shown in [14]. Another perspective would consist in study-
ing K-fold compensated algorithms to see if they can provide
narrow inclusions for summation and dot product, as in K-
fold precision.

As a future work, we could also determine if it would
be possible to obtain tight inclusions using other com-
pensated algorithms, such as compensated exponentia-
tion [31], compensated Newton’s scheme [32], [33], the
compensated evaluation of elementary symmetric func-
tions [34], or the compensated algorithm for solving trian-
gular systems [35].
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