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Adresse électronique : dali@univ-perp.fr



Structured Condition Number and Backward Error for

Eigenvalue Problems

Stef Graillat

28 janvier 2005

Abstract

In this paper, we investigate condition number and backward error for
eigenvalue problems. Results on unstructured condition number for a simple
eigenvalue are recalled and then a definition of a structured condition number
is given for linear structures that are Toeplitz, circulant, Hankel, symmetric,
Hermitian and skew-Hermitian. For these structures (except for circulant), we
show that the unstructured condition number equals the structured condition
number. We generalize these results to eigenvalues of matrix polynomials. We
also study structured backward error for matrix polynomials.

Keywords: structured matrices, structured perturbations, matrix polynomials, condition number,
backward error, eigenvalue problems, polynomial eigenvalue problems

Résumé

Dans ce papier, nous étudions le conditionnement et l’erreur inverse d’un
problème de valeurs propres. Nous rappelons quelques résultats sur le condi-
tionnement des valeurs propres simples. Nous définissons ensuite la notion
de conditionnement structuré pour les structures Toeplitz, circulante, Hankel,
symétrique, hermitienne et antihermitienne. Pour ces structures (excepté le cas
circulant), nous montrons que le conditionnement structuré est égal au condi-
tionnement non structuré. Nous généralisons ce résultats pour les problèmes de
valeurs propres de matrices polynomiales. Enfin, nous étudions l’erreur inverse
structurée pour le problème de valeurs propres de matrices polynomiales.

Mots-clés: matrices structurées, perturbations structurées, matrices polynomiales, nombre de
conditionneent, erreur inverse, valeurs propres
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1 Introduction and notation

Condition numbers play an important role in numerical linear algebra. They measure the sensitivity of
the solution of a problem to perturbations in the data. Indeed, in practice, data are typically corrupted
by errors. Three well known sources of approximation are considered in scientific computation [6]:

(1) errors due to discretization and truncation,

(2) errors due to roundoff, and

(3) errors due to uncertainty in the data.

Numerical methods for computing eigenvalues are mostly affected by rounding errors when working in
finite precision. If the matrix has a given structure, it seems to be natural to take into account this
structure. There are growing interests in algorithms for structured problems since few years (see, for
example, [1, 4, 5] and the references therein). Then it is natural to define structured perturbation
analysis, that is to say, to define new condition numbers with respect to structured perturbations.

Backward errors measure the stability of a numerical method. Using it with condition numbers,
we can derive an upper bound for the error in a computed solution thanks to the well-known “rule of
thumb”,

error . condition number × backward error.

This justifies the study of the backward error for the same problems as for condition numbers.
In this paper, we focus on the following linear structures,

struct ∈ {Toep, circ, Hankel, sym, Herm, skewHerm}, (1.1)

corresponding to the set of Toeplitz, circulant, Hankel, symmetric, Hermitian and skew-Hermitian ma-
trices, see Table 1. One will find in Table 2 the number of independent parameters for the structures we
consider here.

Toeplitz matrices (ti−j)
n−1
i,j=0




t0 t−1 · · · t1−n

t1 t0
. . .

...
...

. . .
. . . t−1

tn−1 · · · t1 t0




Hankel matrices (hi,j)
n−1
i,j=0




h0 h1 · · · hn−1

h1 h2 . .
.

hn

... . .
.

. .
. ...

hn−1 hn · · · h2n−2




Circulant matrices (vi)
n−1
i=0




v0 vn−1 · · · v1

v1 v0
. . .

...
...

. . .
. . . vn−1

vn−1 · · · v1 v0




Table 1: Toeplitz, Hankel and circulant matrices

Structure general Toep Hankel circ sym Herm skewHerm
k n2 2n− 1 2n − 1 n (n2 + n)/2 (n2 + n)/2 (n2 − n)/2

Table 2: Number k of independent parameters

Throughout the paper, we denote by Mn(C) the set of complex n×n matrices and M struct
n (C) the set

of structured complex matrices, struct being defined in (1.1). We endow these spaces with the 2-norm
(also called the spectral norm) denoted by ‖ · ‖. The superscript T denotes the transpose and ∗ denotes
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the conjugate transpose. Throughout the paper, the matrix E is arbitrary and represents tolerances
against which the perturbations are measured.

Let us consider a matrix A ∈ Mn(C). Let λ be a simple nonzero eigenvalue of A with corresponding
right eigenvector x and left eigenvector y so that Ax = λx, and y∗A = λy∗. We define the condition

number of λ by

κE(A, λ) = lim
ε→0

sup

{
|∆λ|

ε|λ|
: (A + ∆A)(x + ∆x) = (λ + ∆λ)(x + ∆x),

∆A ∈ Mn(C), ‖∆A‖ ≤ ε‖E‖

}
. (1.2)

It is well known [3, p.47] that

κE(A, λ) =
‖E‖‖x‖‖y‖

|y∗x||λ|
.

When the matrix A has a given structure, the entries are assumed to be defined according to this
structure. This means that only perturbations on the entries are possible. For example, for a Toeplitz
matrix, since only 2n − 1 coefficients define the matrix, we restrict only these 2n − 1 coefficients to
be perturbed. This justifies the introduction of a structured condition number. Given a matrix A ∈
M struct

n (C), where struct belongs to (1.1), we define the structured condition number of λ by

κstruct
E (A, λ) = lim

ε→0
sup

{
|∆λ|

ε|λ|
: (A + ∆A)(x + ∆x) = (λ + ∆λ)(x + ∆x),

∆A ∈ M struct
n (C), ‖∆A‖ ≤ ε‖E‖

}
.

For A ∈ M struct
n (C), it is clear that we always have

κstruct
E (A, λ) ≤ κE(A, λ).

We are interested in the structures for which κstruct
E (A, λ) = κE(A, λ).

The rest of the paper is organized as follows. In Section 2, we recall useful results. In Section 3, we
prove that for Toeplitz, Hankel, symmetric, Hermitian and skew-Hermitian structures, the structured
condition number equals the unstructured one. In Section 4, we generalize the previous result to the case
of polynomial eigenvalue problems. In Section 5, we study the backward error for polynomial eigenvalue
problems and we show that the structured backward error equals the unstructured backward error for
Toeplitz, circulant, Hankel and symmetric structures.

2 Auxiliary results

In this section, we recall some known results. Rump proved the following result.

Lemma 2.1 (Rump [8, Lem. 10.1]). Let x ∈ Cn. Then there exists C, a complex Hankel matrix,

such that Cx = x and ‖C‖ = 1.

We will use the fact that

A ∈ MToep
n (C) ⇔ AJ ∈ MHankel

n (C) ⇔ JA ∈ MHankel
n (C),

where J is the permutation matrix mapping (1, . . . , n)T into (n, . . . , 1)T ,

J =




(0) 1

. .
.

1 (0)


 .

For a complex number z we define

sign(z) =

{
z/|z|, z 6= 0,

0, z = 0.
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For convenience, we define a function θ by

θ(y, x) := sup{|y∗Fx| : F ∈ Mn(C), ‖F‖ = 1}.

It is clear that θ(y, x) ≤ ‖y‖‖x‖. Defining F = yx∗

‖y‖‖x‖ , we have

‖F‖ =
1

‖y‖‖x‖
max
‖z‖=1

‖yx∗z‖ =
‖y‖

‖y‖‖x‖
max
‖z‖=1

|x∗z| = 1,

and |y∗Fx| = ‖y‖‖x‖ so that θ(y, x) = ‖y‖‖x‖. We define the structured version of this function by

θstruct(y, x) := sup{|y∗Fx| : F ∈ M struct
n (C), ‖F‖ = 1}.

The following theorem exhibits the variation of a simple eigenvalue when a matrix is perturbed.

Theorem 2.2 (Stewart and Sun [9, p.183]). Let λ be a simple eigenvalue of a matrix A, with right

and left eigenvectors x and y, and let Â = A + ∆A be a perturbation of A. Then there is a unique

eigenvalue λ̂ such that

λ̂ = λ +
y∗∆Ax

y∗x
+ O(‖∆A‖2).

Using Theorem 2.2 and the definition (1.2), it follows that (see [2])

κE(A, λ) =
‖E‖

|y∗x||λ|
θ(y, x).

Using the same argument, it is easy to show that

κstruct
E (A, λ) =

‖E‖

|y∗x||λ|
θstruct(y, x).

3 Structured condition number for eigenvalue problems

In this section, we prove that for struct ∈ {Toep, Hankel, sym, Herm, skewHerm}, the structured condition
number equals the unstructured one.

3.1 Hermitian structure

Let A ∈ MHerm
n (C) be an Hermitian matrix with a simple eigenvalue λ (which is real). Let x be a

right eigenvector of A. As A is Hermitian, it follows that x is also a left eigenvector. Then we have
θ(x, x) = ‖x‖2. We want to show that θstruct(x, x) = ‖x‖2 as well. It is clear that θstruct(x, x) ≤ ‖x‖2.
Let us consider F = xx∗

‖x‖2 . This matrix F is Hermitian and satisfies ‖F‖ = 1, |x∗Fx| = ‖x‖2. Then this

implies that θHerm(x, x) = θ(x, x) and so that κHerm
E (A, λ) = κE(A, λ).

3.2 Skew-Hermitian structure

Let A ∈ M skewHerm
n (C) be a skew-Hermitian matrix with a simple eigenvalue λ := iµ with µ ∈ R .

Let x be a right eigenvector of A. As A is skew-Hermitian, it follows that x is also a left eigenvector.
Then we have θ(x, x) = ‖x‖2. We want to show that θstruct(x, x) = ‖x‖2 as well. It is clear that
θstruct(x, x) ≤ ‖x‖2. Let us consider F = ixx∗

‖x‖2 . This matrix F is skew-Hermitian and satisfies ‖F‖ = 1,

|x∗Fx| = ‖x‖2. Then this implies that θskewHerm(x, x) = θ(x, x) and so that κskewHerm
E (A, λ) = κE(A, λ).

3.3 Symmetric structure

Let A ∈ M sym
n (C) be a complex symmetric matrix with a simple eigenvalue λ. Let x be a right

eigenvector of A. Since A is symmetric, it follows that x is a left eigenvector of A. It follows that
we have θ(x, x) = ‖x‖2. Let us show that θsym(x, x) = ‖x‖2. It is clear that θsym(x, x) ≤ ‖x‖2. From
Lemma 2.1, there exists a Hankel (so symmetric) matrix F such that Fx = x and ‖F‖ = 1. Then we have
|x∗Fx| = ‖x‖2 = ‖x‖2. Then, it follows that θsym(x, x) = θ(x, x) and so that κsym

E (A, λ) = κE(A, λ).
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3.4 Hankel structure

Let A ∈ MHankel
n (C) be an Hankel matrix with a simple eigenvalue λ. Let x be a right eigenvector

of A. Since A is symmetric (since Hankel), it follows that x is a left eigenvector of A. It follows that
we have θ(x, x) = ‖x‖2. Let us show that θHankel(x, x) = ‖x‖2. It is clear that θHankel(x, x) ≤ ‖x‖2.
From Lemma 2.1, there exists a Hankel matrix F such that Fx = x and ‖F‖ = 1. Then we have
|x∗Fx| = ‖x‖2 = ‖x‖2. Then, it follows that θHankel(x, x) = θ(x, x) and so that κHankel

E (A, λ) = κE(A, λ).

3.5 Toeplitz structure

Let A ∈ MToep
n (C) be a Toeplitz matrix with a simple eigenvalue λ. Let x be a right eigenvector of A.

Since A is Toeplitz, then JA is Hankel and so symmetric. As Ax = λx, it follows that JAx = λJx. Let
us denote xσ := Jx. Then, it follows that xT JA = λxσ , that is to say xT

σ A = λxT
σ . It means that xσ is

a left eigenvector of A.
It follows that we have θ(xσ , x) = ‖x‖2. Let us show that θToep(xσ , x) = ‖x‖2. It is clear that

θToep(xσ , x) ≤ ‖x‖2. From Lemma 2.1, there exists a Hankel matrix F such that Fx = x and ‖F‖ = 1.
Let us define the Toeplitz matrix G := JF . We have ‖G‖ = 1 and Gx = xσ . Then we have |xσ

∗Gx| =

‖x‖2. Then, it follows that θToep(xσ , x) = θ(xσ , x) and so that κToep
E (A, λ) = κE(A, λ).

4 Structured condition number for polynomial eigenvalue prob-

lems

The polynomial eigenvalue problem is to find the solutions (x, λ) ∈ Cn ×C of

P (λ)x = 0, (4.3)

where
P (λ) = λmAm + λm−1Am−1 + · · · + A0,

with Ak ∈ Mn(C), k = 0 : m. If x 6= 0 then λ is called an eigenvalue and x the corresponding eigenvector.
We assume that P has only finite eigenvalues (and pseudoeigenvalues). Let us define

∆P (λ) = λm∆Am + λm−1∆Am−1 + · · · + ∆A0,

where ∆Ak ∈ Mn(C), k = 0 : m. We suppose now that λ is a nonzero simple eigenvalue with correspond-
ing right eigenvector x and left eigenvector y (that is to say P (λ)x = 0 and y∗P (λ) = 0). Throughout
the paper, the matrices Ek, k = 0 : m allow freedom in how perturbations are measured. The condition
number of λ can be defined by

κE(P, λ) = lim
ε→0

sup

{
|∆λ|

ε|λ|
: (P (λ + ∆λ) + ∆P (λ + ∆λ))(x + ∆x) = 0,

∆Ak ∈ Mn(C), ‖∆Ak‖ ≤ ε‖Ek‖, k = 0 : m

}
.

It is well known [11, Thm. 5] that

κE(P, λ) =
α‖y‖‖x‖

|y∗P ′(λ)x||λ|
.

where α =
∑m

k=0 |λ|
k‖Ek‖.

This result is a consequence of the following theorem that is presented in the proof of [11, Thm. 5].

Theorem 4.1. Let λ be a simple eigenvalue of P , with right and left eigenvectors x and y, and let

P̂ (λ) = P (λ) + ∆P (λ) be a perturbation of P . Then there is a unique eigenvalue λ̂ such that

λ̂ = λ +
y∗∆P (λ)x

y∗P ′(λ)x
+ O(‖∆P (λ)‖2).
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In fact, one can easily show with this theorem that

κE(P, λ) =
γ(y, x)

|y∗P ′(λ)x||λ|
,

where
γ(y, x) := sup{|y∗∆P (λ)x| : ∆Ak ∈ Mn(C), ‖Ak‖ ≤ ‖Ek‖, k = 0 : m}.

It is shown in [11] that γ(y, x) = α‖y‖‖x‖.
We assume now that the matrices ∆Ak have a certain structure belonging to

struct ∈ {Toep, Hankel, sym, Herm, skewHerm}. (4.4)

We also suppose that all the matrices Ak and ∆Ak, k = 0 : n, belong to M struct
n (C) for a given structure

in (4.4). Let
P (λ) = λmAm + λm−1Am−1 + · · · + A0,

with Ak ∈ M struct
n (C), k = 0 : m and

∆P (λ) = λm∆Am + λm−1∆Am−1 + · · · + ∆A0,

where ∆Ak ∈ M struct
n (C). One notices that P (λ) and ∆P (λ) belong to M struct

n (C). The structured
condition number of λ can be defined by

κstruct
E (P, λ) = lim

ε→0
sup

{
|∆λ|

ε|λ|
: (P (λ + ∆λ) + ∆P (λ + ∆λ))(x + ∆x) = 0,

∆Ak ∈ M struct
n (C), ‖∆Ak‖ ≤ ε‖Ek‖, k = 0 : m

}
.

As for the unstructured case, it is easy to show that

κstruct
E (P, λ) =

γstruct(y, x)

|y∗P ′(λ)x||λ|
,

where
γstruct(y, x) := sup{|y∗∆P (λ)x| : ∆Ak ∈ M struct

n (C), ‖Ak‖ ≤ ‖Ek‖, k = 0 : m}.

It is clear from the definition of γstruct(y, x) that γstruct(y, x) ≤ γ(y, x).

4.1 Hermitian structure

Let Ak ∈ MHerm
n (C), k = 0 : m be some Hermitian matrices and λ a real simple eigenvalue of P . Let x

be a right eigenvector of P (λ). As Ak, k = 0 : m are Hermitian and λ is real, it follows that x is also a left
eigenvector. It is shown in [11, Thm. 5] that γHerm(x, x) = γ(x, x) and so that κHerm

E (P, λ) = κE(P, λ).

4.2 Skew-Hermitian structure

Let Ak ∈ M skewHerm
n (C), k = 0 : m be some skew-Hermitian matrices and λ a real simple eigenvalue

of P . Let x be a right eigenvector of P (λ). As P (λ) is skew-Hermitian, it follows that x is also a left
eigenvector. Then we have γ(x, x) = α‖x‖2. We want to show that γskewHerm(x, x) = α‖x‖2 as well. It
is clear that γskewHerm(x, x) ≤ α‖x‖2. Let us consider F = ixx∗

‖x‖2 . This matrix F is skew-Hermitian and

satisfies ‖F‖ = 1, |x∗Fx| = ‖x‖2. Let

∆Ak = − sign(λk)‖Ek‖F, k = 0 : m.

It follows that ∆Ak ∈ M skewHerm
n (C) and |x∗∆P (λ)x| = α‖x‖2. Then this implies that γskewHerm(x, x) =

γ(x, x) and so that κskewHerm
E (P, λ) = κE(P, λ).
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4.3 Symmetric structure

Let Ak ∈ M sym
n (C), k = 0 : m be some complex symmetric matrices and λ a simple eigenvalue of P .

Let x be a right eigenvector of P (λ). Since P (λ) is symmetric, it follows that x is a left eigenvector of
P (λ). It follows that we have γ(x, x) = α‖x‖2. Let us show that γsym(x, x) = α‖x‖2. It is clear that
γsym(x, x) ≤ α‖x‖2. From Lemma 2.1, there exists a Hankel (so symmetric) matrix F such that Fx = x
and ‖F‖ = 1. Then we have |x∗Fx| = ‖x‖2 = ‖x‖2. Let

∆Ak = − sign(λk)‖Ek‖F, k = 0 : m.

It follows that ∆Ak ∈ M sym
n (C) and |x∗∆P (λ)x| = α‖x‖2 and so that |x∗∆P (λ)x| = α‖x‖‖x‖. Then, it

follows that γsym(x, x) = γ(x, x) and so that κsym
E (P, λ) = κE(P, λ).

4.4 Hankel structure

Let Ak ∈ MHankel
n (C), k = 0 : m be some Hankel matrices and λ a simple eigenvalue of P . Let x be a

right eigenvector of P (λ). Since P (λ) is symmetric (since Hankel), it follows that x is a left eigenvector
of P (λ). It follows that we have γ(x, x) = α‖x‖2. Let us show that γHankel(x, x) = α‖x‖2. It is clear
that γHankel(x, x) ≤ α‖x‖2. From Lemma 2.1, there exists a Hankel matrix F such that Fx = x and
‖F‖ = 1. Then we have |x∗Fx| = ‖x‖2 = ‖x‖2. Let

∆Ak = − sign(λk)‖Ek‖F, k = 0 : m.

It follows that ∆Ak ∈ MHankel
n (C) and |x∗∆P (λ)x| = α‖x‖2. Then, it follows that γHankel(x, x) = γ(x, x)

and so that κHankel
E (A, λ) = κE(A, λ).

4.5 Toeplitz structure

Let Ak ∈ MToep
n (C), k = 0 : m be some Toeplitz matrices and λ a simple eigenvalue of P . Let x be a

right eigenvector of P (λ). Since P (λ) is Toeplitz, then JA is Hankel and so symmetric. As Ax = λx, it
follows that JP (λ)x = 0. Let us denote xσ := Jx. Then, it follows that xT JP (λ) = 0, that is to say
xT

σ P (λ) = 0. It means that xσ is a left eigenvector of P (λ).
It follows that we have γ(xσ , x) = ‖x‖2. Let us show that γToep(xσ , x) = α‖x‖2. It is clear that

γToep(xσ , x) ≤ α‖x‖2. From Lemma 2.1, there exists a Hankel matrix F such that Fx = x and ‖F‖ = 1.
Let us define the Toeplitz matrix G := JF . We have ‖G‖ = 1 and Gx = xσ . Then we have |xσ

∗Gx| =
‖x‖2. Let

∆Ak = − sign(λk)‖Ek‖F, k = 0 : m.

It follows that |xσ
∗∆P (λ)x| = α‖y‖‖x‖. Then, it follows that γToep(xσ , x) = γ(xσ , x) and so that

κToep
E (A, λ) = κE(A, λ).

5 Structured backward error for polynomial eigenvalue prob-

lems

The definition of the normwise backward error of an approximate eigenpair (x, λ) of (4.3) is

η(x, λ) := min{ε : (P (λ) + ∆P (λ))x = 0, ‖∆Ak‖ ≤ ε‖Ek‖, k = 0 : m}

We recall some results from Tisseur [11].

Theorem 5.1 (Tisseur [11, Thm 1]). The normwise backward error η(x, λ) is given by

η(x, λ) =
‖r‖

α‖x‖

where r = P (λ)x and α =
∑m

k=0 |λ|
k‖Ek‖.

7



When eigenvectors are not computed, a more appropriate measure of the backward error is

η(λ) := min
x6=0

η(x, λ).

Lemma 5.2 (Tisseur [11, Lem 3]). If λ is not an eigenvalue of P then

η(λ) =
1

α‖P (λ)−1‖
,

where α =
∑m

k=0 |λ|
k‖Ek‖.

The following lemma shows a relation between the backward error and the distance to singularity.

Lemma 5.3. If λ is not an eigenvalue of P then

η(λ) = min{ε : det(P (λ) + ∆P (λ)) = 0, ‖∆Ak‖ ≤ ε‖Ek‖, k = 0 : m}.

Proof. We have

η(λ) = min
x6=0

η(x, λ)

= min
x6=0

min{ε : (P (λ) + ∆P (λ))x = 0, ‖∆Ak‖ ≤ ε‖Ek‖, k = 0 : m}

= min{ε : det(P (λ) + ∆P (λ)) = 0, ‖∆Ak‖ ≤ ε‖Ek‖, k = 0 : m}.

We consider now that the matrices ∆Ak have a certain structure belonging to (1.1). We also suppose
that all the matrices Ak and ∆Ak, k = 0 : n, belong to M struct

n (C) with struct ∈ {Toep, circ, Hankel, sym}.
Let

P (λ) = λmAm + λm−1Am−1 + · · · + A0,

with Ak ∈ M struct
n (C), k = 0 : m and

∆P (λ) = λm∆Am + λm−1∆Am−1 + · · · + ∆A0,

where ∆Ak ∈ M struct
n (C). One notices that P (λ) and ∆P (λ) belong to M struct

n (C).
The definition of the structured normwise backward error of an approximate eigenpair (x, λ) of (4.3)

is

ηstruct(x, λ) := min{ε : (P (λ) + ∆P (λ))x = 0, ∆Ak ∈ M struct
n (C),

‖∆Ak‖ ≤ ε‖Ek‖, k = 0 : m}

As for the unstructured case, we define

ηstruct(λ) := min
x6=0

ηstruct(x, λ).

The same proof as in Lemma 5.3 leads

ηstruct(λ) = min{ε : det(P (λ) + ∆P (λ)) = 0, ∆Ak ∈ M struct
n (C),

‖∆Ak‖ ≤ ε‖Ek‖, k = 0 : m}.

Let us recall some results from Rump [8]. Given a nonsingular matrix A ∈ Mn(C), we define the distance
to singularity by

d(A) = min{‖∆A‖ : A + ∆A singular, ∆A ∈ Mn(C)}.

For a nonsingular matrix A ∈ M struct
n (C), we define the structured distance to singularity by

dstruct(A) = min{‖∆A‖ : A + ∆A singular, ∆A ∈ M struct
n (C)}.

Rump has proved in [8, Thm 12.2] that the two distances d(A) and dstruct(A) are equal for struct ∈
{Toep, circ, Hankel}.
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Theorem 5.4 (Rump [8, Thm 12.2]). Let nonsingular A ∈ M struct
n (A) be given for struct being

Toeplitz, circulant or Hankel. Then we have

d(A) = dstruct(A) = ‖A−1‖−1.

The same property occurs for the symmetric structure. Before stating the result, we will need the
two following lemmas.

Lemma 5.5 (Takagi’s factorization). If A is complex symmetric (AT = A), then there exist a unitary

matrix U and a real nonnegative diagonal matrix Σ = diag(σ1, . . . , σn) such that A = UΣUT .

We refer to [7, Cor. 4.4.4] for a proof.
The next result can be found in Tisseur and Graillat [10]. For completeness, we recall the proof.

Theorem 5.6 (Tisseur and Graillat [10]). Let nonsingular A ∈ M struct
n (C) be given for struct being

symmetric. Then we have

d(A) = dstruct(A) = ‖A−1‖−1 = σmin(A).

Proof. Obviously, we have dstruct(A) ≥ d(A) = ‖A−1‖−1 = σmin(A), and then it remains to show that
(A + ∆A)x = 0 for some x 6= 0 and ∆A symmetric with ‖∆A‖ = σmin(A). Let A = UΣUT be the
Takagi’s factorization of A where U is unitary and Σ is diagonal with nonnegative entries (see Lemma
5.5). Let x be the column of U corresponding to the smallest entry in Σ. Then Ax = σmin(A)x. By
Lemma 2.1 there exists a symmetric matrix C such that Cx = x and ‖C‖ = 1. Let ∆A = −σmin(A)C.
Then ∆A is symmetric, ‖∆A‖ = σmin(A) and

(A + ∆A)x = σmin(A)x − σmin(A)x = 0

so that A + ∆A is singular.

Theorem 5.7. For struct ∈ {Toep, circ, Hankel, sym}, we have

ηstruct(λ) = η(λ) =
1

α‖P (λ)−1‖
,

where α =
∑m

k=0 |λ|
k‖Ek‖.

Proof. From the definition of the structured backward error, it is easy to see that we always have
ηstruct(λ) ≥ η(λ) = 1

α‖P (λ)−1‖ . We just have to show that ηstruct(λ) ≤ 1
α‖P (λ)−1‖ . From Theorem 5.4,

there exists X ∈ M struct
n (C) such that P (λ) + X is nonsingular with ‖X‖ = ‖P (λ)−1‖−1. Let ∆Ak be

matrices defined by

∆Ak =
1

α
sign(λk)‖Ek‖X, k = 0 : m,

where α =
∑m

k=0 |λ|
k‖Ek‖. We have ∆P (λ) = X and moreover ‖X‖ = ‖P (λ)−1‖−1 = αη(λ). Then we

deduce that ηstruct(λ) ≤ η(λ) and so equality must hold.

6 Conclusion

In this paper, we have shown that the structured condition number for a simple eigenvalue equals the
unstructured condition number for the following structures: Toeplitz, Hankel, symmetric, Hermitian
and skew-Hermitian. We have generalized these results for polynomial eigenvalue problems. Moreover,
we have shown for the polynomial eigenvalue problem that the structured backward error equals the
unstructured backward error for Toeplitz, Hankel, circulant and symmetric structures.
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