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Abstract

When polynomials have limited accuracy coefficients or are computed in finite pre-
cision, classical algebraic problems such that GCD, primality, divisibility have to be
redefined. Such approximate algebraic problems are still challenging open questions
in the symbolic computation community. In this paper, we show how a numeri-
cal tool, the pseudozero set, may provide solutions to some approximate algebraic
problems. We propose a graphical answer to test polynomial primality.
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1 Introduction

An open challenge in symbolic computation is to define reliable finite preci-
sion computations to solve exact problems. Except in Mathematics, polyno-
mials have coefficients known to a limited accuracy. Such uncertainty may
come from measured or observed data or previous computations performed
in finite precision, i.e. in floating point arithmetic. Polynomials we consider
in this paper suffer from such an uncertainty. Algebraic computation with
uncertain polynomials occur in robotic, CAGD [39], molecular biology, etc.
Classical polynomial problems like GCD, divisor or primality have to be rede-
fined to take into account the limited accuracy of the polynomial coefficients.
Numerous papers considering these questions are proposed in the symbolic
computation literature, e.g. [1,2,38].
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On the other hand, the scientific computing community is used to manage the
effects of finite precision computation to the stability of numerical algorithm
and the accuracy of computed results, particularly in numerical linear algebra.
Very less results are proposed for problems that involve polynomial computa-
tion. This gap may be justified since polynomial problems can be transformed
in linear algebra problems (thanks to ad hoc matrices such that companion
matrices, Sylvester matrix, . . . ) in real arithmetic.

The reliability of this transformation when problems are solved with finite
precision arithmetic is not clear and motivates the kind of approach we de-
scribe herein. Two well known papers illustrate this difficulty for polynomial
zerofinding : Toh and Trefethen report in [42, p.404] that “finding zeros via
eigenvalues of companion matrices, the method used by the MATLAB roots

command, is a stable algorithm” whereas Edelman and Murakami “construct
examples for which a small componentwise relative backward error is neither
predicted nor obtained in practice” [7, p.763]. This paper aims to illustrate
that specific tools for polynomials exist and help to understand and solve some
polynomial problems. We focus here the set of pseudozeros and some applica-
tion of this tool introduced by Mosier [28] and, in our point of view, that have
not been exploited enough. Main published results discuss the equivalence
between the pseudozero set and the pseudospectra of the companion matrix
[42,7]. We propose to test the primality of two univariate polynomials having
coefficients known to a limited accuracy with these pseudozeros.

The paper is organized as follows. Approximate polynomial problems are pre-
sented in Section 2. Next two Sections 3 and 4 are respectively devoted to
polynomial pseudozeros and first applications. The test of the polynomial pri-
mality is proposed in Section 5.

2 Approximate GCD and primality

The classic definition of the polynomial GCD does not fit the finite precision
field. For example, let p and q be two unitary polynomials such that deg p > 1
and p divides q. It yields that gcd(p, q) = p. Nevertheless, for any number
ε > 0, we have gcd(p + ε, q) = 1 : any small perturbation of the polynomial
p critically affects the GCD. Since polynomial GCD does not depend contin-
uously of the perturbation of its coefficients, computing a polynomial GCD is
an ill-posed problem in the sense of Hadamard.

We have the same difficulty with the easiest problem of primality. The follow-
ing example from [2] is significant. As soon as the coefficients of the following
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polynomials

p(z) = (z − 1

3
)(z − 5

3
) = z2 − 2z +

5

9
, and q(z) = z − 1

3
.

are represented with binary floating point numbers, p et q become coprime
whereas they have a common root in exact arithmetic. On the contrary, poly-
nomials

p(z) = 50z − 7 and q(z) = z − 1

7
,

are coprime in exact arithmetic whereas they share a common root if we seek
it with two decimal digit numbers since 1/7 = 0.14285714 and 7/50 = 0.14.

The first definition of an approximate GCD is proposed by Schönhage [38]
in 1985 but is not appropriated since its computation involved coefficients
known up to an arbitrary precision. The following more standard definition
introduces ε-divisors and the ε-GCD.

Definition 1 Given two polynomials p and q of degree respectively n and m,
and ε a positive real, an ε-divisor (or approximate divisor) of p and q is every
divisor of perturbed polynomials p̂ and q̂ satisfying ‖p − p̂‖ 6 ε, ‖q − q̂‖ 6 ε
and deg(p− p̂) 6 n, deg(q − q̂) 6 m.
An ε-GCD of p and q is an ε-divisor of highest degree.

One can verify that the ε-GCD is not unique in general.

Polynomials are defined either by its roots or its coefficients. The study of the
ε-GCD when the roots are perturbed is proposed by Pan in [32,34]. When
coefficients suffer from uncertainty, two approaches have been proposed.

• The Euclidean algorithm is modified by changing the tests and the stopping
criterion [11,23]. This kind of algorithms is efficient since it is similar to the
classic Euclidean algorithm but does not work in finite precision. Alas, it
only yields an ε-divisor and no, in general, an ε-GCD. Since the degree of
the GCD equals the deficient rank of the Sylvester matrix, [6,11,10] compute
the numerical deficiency rank that corresponds to the degree of an ε-GCD.
This computation is reliably performed in finite precision using the singular
value decomposition (SVD).
• The second approach formulates the ε-GCD problem as an optimization

problem [24,25]. Karmarkar and Lakshman compute an ε-GCD together
with the perturbed polynomial. A part of the algorithm can be executed in
finite precision. The drawback of this algorithm is that it is exponential in
the degree of the GCD.

The corresponding ε-primality problem consists in proving whether ε-GCD(p, q)
equals 1 or not.

3



Definition 2 Let two polynomials p and q of degree respectively n and m and
ε a positive real. Polynomials p and q are ε-coprime if ε-GCD(p, q) = 1.

Of course, computing an ε-GCD and compare it to 1 suffers from a too ex-
pensive complexity. Beckermann and Labahn propose a new algorithm to deal
with primality without computing an ε-GCD in [2].

Using the norm ‖p‖ =
∑
j |pj| defined on C[z] and

‖(p, q)‖ = max{‖p‖, ‖q‖} = max{
∑
|pi|,

∑
|qj|},

they define ε(p, q) to be the minimum distance between two given polynomials
and not coprime ones ; that is for p, q ∈ C[z],

ε(p, q) = inf{‖(p−p̂, q−q̂)‖ : (p̂, q̂) have a common root and deg p̂ 6 n, deg q̂ 6 m}.

Beckermann and Labahn compute a lower bound for ε(p, q) and so guaranty
a primality neighborhood around p and q. This algorithm costs O((n + m)2)
operations but does not always yield sharp bound.

We propose to answer to the polynomial ε-primality problem thanks to the
set of pseudozeros. In the next section, we propose a uniform presentation of
pseudozeros that gather definition and properties from Mosier [28], Trefethen
and Toh [42], Chatelin and Frayssé [4] and Stetter [41].

3 Definition and computation of the ε-pseudozero set

3.1 Definition of the ε-pseudozero set

Pn denotes the set of polynomials with complex coefficients and degree at most
n. Let p ∈ Pn given by

p(z) = p0 + p1z + · · ·+ pnz
n. (1)

Representing p by the vector of its coefficients, we define a norm ‖ · ‖ on Pn
as the norm on Cn+1 of the vector of the polynomial coefficients.
For this norm, we define an ε-neighborhood of p to be the set of every poly-
nomial of degree at most n, closed enough to p, that is,

Nε(p) = {p̂ ∈ Pn : ‖p− p̂‖ 6 ε} . (2)
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Then the ε-pseudozero set is defined to gather all the zeros of the ε-neighborhood.
A non constructive definition of this set is

Zε(p) = {z ∈ C : p̂(z) = 0 for p̂ ∈ Nε(p)} . (3)

3.2 A computable form of the ε-pseudozero set

The following theorem prove that the ε-pseudozero set can be obtain as a level
contour of an easily computable function.

Theorem 3 The ε-pseudozero set satisfies

Zε(p) =

{
z ∈ C : |g(z)| = |p(z)|‖z‖∗

6 ε

}
, (4)

where z = (1, z, . . . , zn) and ‖ · ‖∗ is the dual norm of ‖ · ‖.

PROOF. We remind that the dual norm ‖ · ‖∗ on Cn+1 is defined by

‖x‖∗ = max
z 6=0

|ztx|
‖z‖ = max

‖z‖=1
|ztx|.

If z ∈ Zε(p) then it exists p̂ ∈ Pn such that p̂(z) = 0 et ‖p − p̂‖ 6 ε. From
Hölder’s inequality |xty| 6 ‖x‖‖y‖∗, we get

|p(z)| = |p(z)− p̂(z)| = |
n∑

i=0

(pi − p̂i)zi| 6 ‖p− p̂‖‖z‖∗.

It follows |p(z)| 6 ε‖z‖∗.

To prove the reciprocal, let u ∈ C be such that |p(u)| 6 ε‖u‖∗. A classical
result enable us to assert the existence of a vector d = (di) ∈ Cn+1 with norm
1 satisfying d∗u = ‖u‖∗ ([17, p.107] or [22, p. 278]). This vector d is called the
dual vector of u. Let us introduce the polynomials r and pu defined by

r(z) =
n∑

k=0

rkz
k with rk = dk, (5)

pu(z) = p(z)− p(u)

r(u)
r(z). (6)

Such polynomial pu is the nearest polynomial of p, in the sense of the norm
‖ · ‖, with u as root.
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It is clear that r(u) = dtu = ‖u‖∗ and pu(u) = 0. So we have

‖p− pu‖ =
|p(u)|
|r(u)|‖r‖ 6 ‖d‖ε.

As ‖d‖ = 1, we get

‖p− pu‖ 6 ε.

Hence u ∈ Zε(p). 2

3.3 Computing the ε-pseudozero set

Theorem 3 yields a computable expression for the ε-pseudozero set. It consists
in evaluating a normalized form of polynomial p on a grid of the complex plane
and comparing its value to the ε parameter.

Matlab software, for example, provides primitives that allow us to plot pseu-
dozeros with the following very simple Algorithm 1. Such an implementation
is very similar to existing pseudospectra software [8].

Algorithm 1 Computation of ε-pseudozero set

Require: polynomial p and precision ε
Ensure: pseudozero set layout in the complex plane
1: We grid a square containing the whole roots of p with the Matlab com-

mand meshgrid.
2: We compute g(z) for the whole points z on the grid.
3: We draw the level line |g(z)| = ε with the Matlab command contour.

Let L be the length of the square and h the step of discretisation. Evaluating
of g(u) needs the evaluation of a polynomial, that costs O(n) operations, the
computation of the norm of a vector whose complexity depends on the norm.
For example, the computation of the ‖ · ‖1 requires n− 1 operations and ‖ · ‖2

requires 2n operations. Let us denote O(‖·‖∗) this complexity. The complexity
of the whole algorithm is in O((L/h)2(n + ‖ · ‖∗)).

Now, we expand the computable form of pseudozeros considering the two main
perturbation types : normwise perturbations and componentwise perturba-
tions. Componentwise perturbations describe every coefficient perturbations
whereas normwise perturbations globally apply to the vector of coefficients.
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3.4 Pseudozeros for normwise perturbations

Let p be defined by Relation (1) and p̂ a perturbed polynomial of p. We define
the normwise norm by

‖p− p̂‖N =
‖p− p̂‖

β
,

where ‖ · ‖ is a norm on the polynomials and β is a real. We usually choose
β = ‖p‖ to have a relative norm.

For such normwise perturbation, Theorem 3 gives the following result.

Corollary 4 The ε-pseudozero set with normwise perturbations satisfies

ZNε (p) =

{
z ∈ C :

|p(z)|
‖z‖∗β

6 ε

}
, (7)

where z = (1, z, . . . , zn) and ‖ · ‖∗ is the dual norm of ‖ · ‖.

3.5 Pseudozeros for componentwise perturbations

We define the componentwise norm by

‖p− p̂‖C = max
i

|pi − p̂i|
fi

,

where (fi)i=0,...,n are non-negative real numbers. Usually, we take fi = |pi| in
order to have a relative norm. This perturbation provides a detailed description
of the finite precision effect when the polynomial coefficient are represented
with floating point numbers.

Theorem 3 now gives the following result.

Corollary 5 The ε-pseudozero set with componentwise perturbations satisfies

ZCε (p) =

{
z ∈ C :

|p(z)|
∑n
i=0 |fi||z|i

6 ε

}
. (8)

4 First answers to approximate algebraic problems with pseudoze-
ros

Drawing an ε-pseudozero set gives a “better understanding” of the behavior
of the polynomial when we compute with it. It can help us to analyse the
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result of a computation. For instance, Figure 1 is the ε-pseudozero set of the
Wilkinson polynomial

W20(z) = (z − 1)(z − 2) · · · (z − 20),

when the coefficient of z19 is perturbed with ε = 2−23.

0 2 4 6 8 10 12 14 16 18 20 22
−4

−3

−2

−1

0

1

2

3

4

Fig. 1. ε-pseudozero set of Wilkinson polynomial for componentwise perturbation
ε = 2−23 to the coefficient z19.

This plotting proves that no backward stable algorithm performed in IEEE-
754 single precision can isolate the roots 10, 11, . . . , 20 of W20.

Figure 2 shows the evolution of the ε-pseudozero set when refining the preci-
sion ε. This can help us to choose the minimum computing precision necessary
to isolate the roots.

The ε-pseudozero set can be used to decide the stability of system. Some-
times, it is important to know if it exists a root of modulus greater or less
than 1. When the polynomial coefficients are known with a tolerance ε, it
is difficult to compute all the roots of every polynomial in its neighborhood.
Of course, sensitivity analysis that uses the condition number of the polyno-
mial with respect to its coefficients can be performed and yields a first order
criteria. Pseudozeros provide an alternative answer to this question without
neglecting higher order effects of coefficient uncertainties. It suffices to draw
the ε-pseudozero set and verify if it is included in the unit circle.

Figure 3 shows the ε-pseudozero set of polynomial p(z) = (z − 0.8)2 with two
coefficient uncertainties ε = 0.1 and ε = 0.01.
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(a) ε = 10−1
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(b) ε = 10−1.2
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(c) ε = 10−1.”
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(d) ε = 10−1.4

Fig. 2. Pseudozero set of the polynomial p(z) = 1 + z+ · · ·+ z20 for different values
of ε.
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Fig. 3. ε-pseudozero set of the polynomial p(z) = (z−0.8)2 with ε = 0.1 and ε = 0.01

From the picture, we cannot decide the stability for ε = 0.1 because some
0.1-pseudozeros have modulus greater than 1. On the other hand, we can see
that all the 0.01-pseudozeros have modulus less than 1 and so conclude for
stability.

Pseudozeros illustrate the well-known “rule of thumb” that describes the at-
tainable accuracy of a multiple root computed in precision ε: this accuracy is
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of the order of εm where m is the multiplicity of the root (ε < 1). Another
interpretation of this “rule of thumb” is that a backward stable algorithm
cannot compute separate roots of any polynomial that admits a root in the
εm-pseudozero set of a polynomial with a root of multiplicity equals to m. We
verify this property computing for example the ε-pseudozeros of polynomials:

p1(z) = z − 1,

p2(z) = (z − 1)2,

p3(z) = (z − 1)3,

with, respectively, ε1 = ε, ε2 = ε2, ε3 = ε3 and ε = 10−1. Figure 4 exhibits
that the three sets Zε1(p1), Zε2(p2), and Zε3(p3) are very similar (right side)
compared to the ε-pseudozeros Zε of polynomials p1, p2 and p3 (left side).
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(a) Zε of p1, p2, p3 and ε = 10−1
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(b) Pseudozero sets Zε(p1), Zε2(p2),
Zε3(p3) for ε = 10−1

Fig. 4. Comparison of different pseudozeros in terms of multiplicity

5 Polynomial primality and ε-pseudozero set

Let p and q belonging respectively to Pn and Pm. It follows from the definition
of coprimeness that p and q are ε-coprime if and only if for all p̂ ∈ Nε(p),
q̂ ∈ Nε(p), the polynomials p̂ and q̂ are coprime.

The ε-pseudozero set provides an answer to the study of ε-primality. From the
definition of the ε-pseudozero set, we derive that:

• if the intersection of the ε-pseudozero sets of p and q is empty then the two
polynomials are ε-coprime,
• if the intersection is not empty then they are not ε-coprime.

Let us prove these assertions.
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Let p and q be two polynomials with complex coefficients. If Zε(p)∩Zε(q) = ∅
then from the ε-pseudozero set definition, we cannot find p̂ ∈ Nε(p) and
q̂ ∈ Nε(q) having a common root. It means that p and q are ε-coprime. If
now Zε(p) ∩ Zε(q) 6= ∅, then let us take a ∈ Zε(p) ∩ Zε(q). It means that it
exists p̂ ∈ Nε(p) and q̂ ∈ Nε(q) such that p̂(a) = 0 and q̂(a) = 0. Hence the
polynomial (z − a) divide p̂ and q̂. Therefore p et q are not ε-coprime.

We illustrate this property considering, for example, p and q, where

p(z) = z2 − 3.999z + 3.001 and q(z) = z2 − 3.001z + 1.999.

We draw the ε-pseudozero set of these two polynomials for two values of ε
(0.0009 and 0.002) in Figure 5. On the left hand side picture, the intersection
is empty so the two polynomial p and q are 0.0009-coprime. On the contrary,
the intersection is not empty on the right hand picture, so p and q are not
0.002-coprime.
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(a) p and q are 0.0009-coprime
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0.004

0.006

0.008

0.01

ε = 0.002 

(b) p and q have a common 0.002-
divisor

Fig. 5. ε-pseudozero set for different values of ε of the polynomials p and q.

6 Computing ε-pseudozero set in finite precision

In this section, we discuss two aspects of the finite precision computation of
ε-pseudozero set.

6.1 How can we a priori choose the grid?

The initial grid must satisfy the two following properties:

a) the zeros and pseudozeros are included in its coverage;
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b) the roots are isolated by the grid discretisation.

a) We choose to grid the square [−R,R]× [−R,R] where

R = max{1,
n∑

i=1

|pi|+ nε}.

Let p be a unitary polynomial of degree n and {zi} the set of its n roots. For
r = max

i=1,...,n
|zi|, we verify [27, p. 154] that

r 6 max{1,
n∑

k=1

|pk|}.

This enables us to build a square containing the set of the pseudozeros. Indeed,
let z be in Zε(p). Then we know it exists p̂ ∈ Nε(p) such that p̂(z) = 0. The
complex number z being a root of p̂, it is less than the greatest root of p̂. So
we have the inequality

|z| 6 max{1,
n∑

k=1

|p̂k|}.

Assuming that the perturbation norm is an Hölder p-norm ‖ · ‖p, we know
that ‖p− p̂‖p 6 ε. Since ‖ · ‖∞ 6 ‖ · ‖p, ‖p− p̂‖∞ 6 ε. Then |pi − p̂i| 6 ε and
we have |p̂| 6 |pi|+ ε for all i = 1, . . . , n. Hence,

|z| 6 max{1,
n∑

i=1

|pi|+ nε} = R.

It yields that Zε(p) ⊂ B(0, R), where B(0, R) is the closed ball of center 0 and
of radius R.

The drawbacks of this method is that if the polynomial coefficients are large
then the grid can be very large even if the roots are very small. A solution
would be using other bounds for the roots.

b) We need a grid that provides the isolations of the roots of p. The discreti-
sation step of the grid must be chosen consequently. It exists numerous results
about the separation of the roots. Current implementation of our pseudozero
package does not automatically manage the separation of the roots since we
choose the discretisation step by successive experimentations.

6.2 Accuracy limitation due to the finite precision evaluation of p(z)

The computation of the pseudozero set consists in the evaluation of the func-
tion g(z) = p(z)/f(z) (where p is a polynomial and f a norm) performed at
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every node of the chosen grid. For usual norm, we have f(z) > 1 and the asso-
ciated computing error is negligible. The error in the evaluation of polynomial
p has to be considered.

Let y be the evaluation of p(z) using the Hörner’s scheme. It is well known
[17, p. 95] that

|y − p(z)| 6 2nu
n∑

i=0

|pi||z|i =: η,

where u is the computing precision. The more precise following bound has
been proposed by Kahan

|y − p(z)| 6 8nu
n∑

i=0

|sizi| with si =
n∑

j=i

pjz
j−i.

Then no reliable interpretation of ε-pseudozeros can be proposed when ε < η.
In this case, increasing the computing precision u yields a reliable evaluation
of ε-pseudozeros.

7 Conclusion and future directions

We have shown that plotting pseudozero can give qualitative and quantitative
interesting informations about the behavior of polynomials used in a finite
precision environment. Future work consists in developing a software that will
automatize all the procedures described in the article. We hope that pseu-
dozeros will be used as much as the pseudospectra because it seems to us that
it could be useful for some application fields as CGAD, control and network
theory for example.
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