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Introduction

This work concerns with the numerical computation of the k -th elementary symmetric function (ESF)
with floating-point inputs X = (x1, . . . , xn), which is defined as

S
(n)
k (X) =

∑

1≤π1<···<πk≤n

xπ1xπ2 · · · xπk, 1 ≤ k ≤ n.

We focus mainly on the case 2 ≤ k ≤ n− 1. For k = 1, the problem simplifies to the computation of
the sum of floating-point numbers, and for k = n, to the computation of floating-point product. The
classic and widely-used method is the so-called Summation Algorithm, denoted by SumESF, which is
essentially the algorithm used by MATLAB’s poly.

Summation Algorithm

Input: X = (x1 . . . xn)

Output: k-th ESF S
(n)
k (X) = S

(n)
k

function S
(n)
k =SumESF(X, k)

S
(i)
0 = 1, 1 ≤ i ≤ n− 1; S

(i)
j = 0, j > i; S

(1)
1 = x1;

For i = 2 : n
For j = Max{1, i + k − n} : Min{i, k}

S
(i)
j = S

(i−1)
j + xiS

(i−1)
j−1 ;

end

end

The error analysis has been considered in [1], and the result implies that the algorithm is forward
stable. We present the relative forward error bound as follows,

∣∣∣∣∣∣
SumESF(X, k)− S

(n)
k (X)

S
(n)
k (X)

∣∣∣∣∣∣
≤

1

k
γ2(n−1)cond(S

(n)
k (X))

with

cond(S
(n)
k (X)) =

kS
(n)
k (|X|)

|S
(n)
k (X)|

,

where γn = nu/(1−nu) with u be the rounding error unit(in double precision u = 2−53) and absolute
value is to be understood componentwise. However, when performed in floating-point arithmetic, the
computed result by SumESF may still be less accurate than expected due to cancelations. This is why
a more accurate algorithm is required.

Error Free Transformation

For a pair of floating-point numbers a, b ∈ F, when no underflow occurs, there exists a floating-point
number y satisfying a ◦ b = x + y with ◦∈{+,−,×}, where x = fl(a ◦ b) is the usual floating-point
approximation and y represents the exact rounding error. The transformation (a, b) −→ (x, y) is
regarded as an EFT. The EFT algorithms for the addition and product of two floating-point numbers

used in CompSumESF are TwoSum and TwoProd algorithms, respectively. One can see the details about
their properties in [2].

function [x, y] = TwoSum(a, b)
x = a⊕ b
z = x⊖ a
y = (a⊖ (x⊖ z))⊕ (b⊖ z)

function [x, y] = Split(a)
c = factor⊗ a (in double precision factor = 227 + 1)
x = c⊖ (c⊖ a)
y = a⊖ x

function [x, y] = TwoProd(a, b)
x = a⊗ b
[a1, a2]= Split(a)
[b1, b2] = Split(b)
y = a2⊗ b2⊖ (((x⊖ a1⊗ b1)⊖ a2⊗ b1)⊖ a1⊗ b2)

Compensated Algorithm

By introducing error-free transformation (EFT) to the traditional Summation Algorithm, we propose
a fast and accurate compensated algorithm, which is denoted by CompSumESF.

Compensated Summation Algorithm

Input: X = (x1 . . . xn)

Output: k-th ESF S
(n)
k (X) = S

(n)
k

function S
(n)
k =CompSumESF(X, k)

Ŝ
(i)
0 = 1, 1 ≤ i ≤ n− 1; Ŝ

(i)
j = 0, j > i; Ŝ

(1)
1 = x1;

ǫ̂S
(i)
j = 0,∀ i, j

For i = 2 : n
For j = Max{1, i + k − n} : Min{i, k}

[p, β
(i)
j ] = TwoProd(xi, Ŝ

(i−1)
j−1 );

[Ŝ
(i)
j , σ

(i)
j ] = TwoSum(Ŝ

(i−1)
j , p);

ǫ̂S
(i)
j = ǫ̂S

(i−1)
j ⊕ (β

(i)
j ⊕ σ

(i)
j )⊕ xi ⊗ ǫ̂S

(i−1)
j−1

end

end

S
(n)
k = Ŝ

(n)
k ⊕ ǫ̂S

(n)
k

Then, the forward error bound of our method is

∣∣∣∣∣∣
CompSumESF(X, k)− S

(n)
k (X)

S
(n)
k (X)

∣∣∣∣∣∣
≤ u +

1

k
γ22(n−1)cond(S

(n)
k (X)),

It is interesting to compare our method with the approach using Bailey’s double-double arithmetic
denoted by DDSumESF. All the results about accuracy measurements are reported on Figure, which

imply that the result computed by our method is as accurate as if computed in twice the working
precision. When the problem is not too ill-conditioned it yields nearly full accuracy. We perform
numerical tests about measured running time, using compiler VC++9.0, on a laptop with a Intel(R)
Core(TM) i5-2520M processor, with two cores each at 2.50Ghz. The results show that CompSumESF
is as accurate as DDSumESF but only requires on the average 57% of its measured running time.
Moreover, our method only requires addition and multiplication of floating-point numbers in the same
working precision as the given data. As a consequence, it seems that our method is a simple, fast and
accurate algorithm to compute elementary symmetric functions.
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Application

As an application, the ESFs appear when expanding a linear factorization of a polynomial

n∏

i=1

(x− xi) =
n∑

i=0

cix
i =

n∑

i=0

(−1)n−iS
(n)
n−i(X)xi.

It is an option to use our method to accurately evaluate polynomial’s coefficients from zeros, specially
to compute characteristic polynomials from eigenvalues. The computation of ESFs is also an impor-
tant part of conditional maximum likelihood estimation of item parameters under the Rasch model in
psychological measurement [3]. It is promising that our method, improving the numerical accuracy,
can allow much more items to be calibrated.
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