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Abstract

When polynomials have limited accuracy coefficients or are computed in finite pre-
cision, classical algebraic problems such that GCD, primality, divisibility have to be
redefined. Such approximate algebraic problems are still challenging open questions
in the symbolic computation community. In this paper, we focus on a numerical and
graphical tool: the pseudozero set. We show how pseudozeros may provide solutions
to some approximate algebraic problems like polynomial stability and primality.
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1 Introduction

Most of real life polynomials have coefficients known to a limited accuracy.
Such uncertainty may come from measured or observed data or previous com-
putations performed in finite precision, i.e. in floating point arithmetic. Poly-
nomials we consider in this paper suffer from such an uncertainty. Algebraic
computation with uncertain polynomials occur in robotic, CAGD [23], molec-
ular biology, etc. Classical polynomial problems like GCD, divisor or primality
have to be redefined to take into account the limited accuracy of the polyno-
mial coefficients.
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Define reliable finite precision computations is an open challenge in symbolic
computation and numerous results exist in this domain, e.g. [2,3,22]. On the
other hand, the scientific computing community is used to manage the effects
of finite precision computation to the stability of numerical algorithm and the
accuracy of computed results, particularly in numerical linear algebra. Very
less results are proposed for problems that involve polynomial computation.
This gap may be justified since polynomial problems can be transformed in
linear algebra problems (thanks to ad hoc matrices such that companion ma-
trices, Sylvester matrix, . . . ) in real arithmetic.

The reliability of this transformation when problems are solved with finite
precision arithmetic is not clear and motivates the kind of approach we de-
scribe herein. Two well known papers illustrate this difficulty for polynomial
zerofinding : Toh and Trefethen report in [25, p.404] that “finding zeros via
eigenvalues of companion matrices, the method used by the MATLAB roots

command, is a stable algorithm” whereas Edelman and Murakami “construct
examples for which a small componentwise relative backward error is neither
predicted nor obtained in practice” [5, p.763]. This paper aims to illustrate
that specific tools for polynomials exist and help to understand and solve some
polynomial problems. We focus here the set of pseudozeros and some appli-
cation of this tool introduced by Mosier [18] and, in our point of view, that
have not been exploited enough. Main published results discuss the equiva-
lence between the pseudozero set and the pseudospectra of the companion
matrix [25,5]. We propose to revisit some aspects of polynomial pseudozeros
proposing new applications, for example to test the primality of two univari-
ate polynomials having coefficients known to a limited accuracy with these
pseudozeros or stability criteria in system control.

The paper is organized as follows. Approximate polynomial problems are pre-
sented in Section 2. Next Section 3 is devoted to polynomial pseudozeros. This
section is a survey on main results existing in the literature about the pseu-
dozeros. Indeed, this notion is quite little know, that is why we recall some
important results about it from Mosier [18], Trefethen and Tho [25], Edelman
and Murakami [5]. First applications of pseudozeros are presented in Section 4.
The test of the polynomial primality is proposed in Section 5. In Section 6,
we deal with the computation of the pseudozero set in finite precision.
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2 Polynomial GCD and primality in finite precision

2.1 Appropriate definitions are necessary in finite precision

The classic definition of the polynomial GCD does not fit the finite precision
field.

For example, let p and q be two unitary polynomials such that deg p > 1 and p
divides q. It yields that gcd(p, q) = p. Nevertheless, for any real number ε > 0,
we have gcd(p, q+ε) = 1 : any small perturbation of the polynomial q critically
affects the GCD. Since polynomial GCD does not depend continuously of the
perturbation of its coefficients, computing a polynomial GCD is an ill-posed
problem in the sense of Hadamard.

We have the same difficulty with an easiest problem: the primality of two
polynomials. The following example from [3] is significant. As soon as the
coefficients of the following polynomials

p(z) = (z −
1

3
)(z −

5

3
) = z2 − 2z +

5

9
, and q(z) = z −

1

3
,

are represented with binary floating point numbers, p et q become coprime
whereas they have a common root in real arithmetic. On the contrary, poly-
nomials

p(z) = 50z − 7, and q(z) = z −
1

7
,

are coprime in exact arithmetic whereas they share a common root if we seek
it with two decimal digit numbers since 1/7 = 0.14285714 and 7/50 = 0.14.

To introduce an appropriate definition of polynomial primality in finite preci-
sion, we first briefly consider the more general notion of ε-GCD.

2.2 Polynomial ε-GCD

The following standard definition introduces ε-divisors and an ε-GCD (see [19]
for example). We assume ‖ · ‖ is a norm on a polynomial field.

Definition 1 Given two polynomials p and q of degree respectively n and m,
and ε a positive real, an ε-divisor (or approximate divisor) of p and q is every
divisor of perturbed polynomials p̂ and q̂ satisfying ‖p − p̂‖ 6 ε, ‖q − q̂‖ 6 ε
and deg(p− p̂) 6 n, deg(q − q̂) 6 m.
An ε-GCD of p and q is an ε-divisor of highest degree.
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One can verify that an ε-GCD is not unique in general.

Such ε-GCD fit well the classic case when coefficients of p and q polynomi-
als suffer from uncertainty. Two types of algorithms have been proposed to
compute polynomial ε-GCD.

(1) The classic Euclidean algorithm is modified by changing the tests and
the stopping criterion [7,12]. This set of algorithms is natural since it is
similar to the classic Euclidean algorithm but does not provide correct
result in finite precision: it only yields an ε-divisor and no, in general, an
ε-GCD.

(2) The second approach formulates the ε-GCD problem as an optimization
problem [15]. Karmarkar and Lakshman compute an ε-GCD together
with the perturbed polynomials. A part of the algorithm can be performed
in finite precision but its complexity is exponential in the degree of the
GCD.

In 1985, Schönhage was the first to tackle this problem introducing a nearby
notion he called approximate GCD [22]. The proposed algorithm to compute
this quantity is not always appropriated since it needs coefficients known up
to an arbitrary precision. The very special case where polynomials are defined
by roots suffering from uncertainty is considered by Pan in [19]. Reference [21]
proposes entries and synthesis about ε-GCD algorithms.

2.3 Polynomial ε-primality

The corresponding ε-primality problem consists in proving whether ε-GCD(p, q)
equals 1 or not.

Definition 2 Let two polynomials p and q of degree respectively n and m and
ε a positive real. Polynomials p and q are ε-coprime if ε-GCD(p, q) = 1.

Of course, computing an ε-GCD and comparing it to 1 suffers from a too
expensive complexity. A first challenging problem is to decide whether two
given polynomials suffering from coefficient uncertainties bounded by a given
quantity ε are coprime. Computing the minimum uncertainty that transforms
coprime polynomials into non-coprime ones is a natural generalization of the
previous question.

Beckermann and Labahn propose an algorithm to deal with primality without
computing an ε-GCD [3]. Using the norm ‖p‖ =

∑
j |pj| defined on C[z] (pj

being p coefficients) and

‖(p, q)‖ = max{‖p‖, ‖q‖} = max{
∑

|pi|,
∑

|qj|},
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they define ε(p, q) to be the minimum distance between two given polynomials
and not coprime ones ; that is for p, q ∈ C[z],

ε(p, q) = inf{‖(p−p̂, q−q̂)‖ : (p̂, q̂) have a common root and deg p̂ 6 n, deg q̂ 6 m}.

Beckermann and Labahn compute a lower bound for ε(p, q) and so guarantee
a primality neighborhood around p and q. This algorithm is integrated in
the Maple distribution (since Release 8 [16]) as the SNAP package [14]. This
algorithm costs O((n+m)2) operations but does not always yield sharp bound
for ε(p, q) as we exhibit it now.

Let us choose for example p = z2 and q = (z − 1)2.
The function DistanceToCommonDivisors of the SNAP package yields 0.125
as a lower bound for ε(p, q). Now, we use the function AreCoprime asking for

> AreCoprime(p,q,z,0.2);

It returns FAIL, that means the software is not able to decide the 0.2-primality
of p and q (other results are TRUE and FALSE).

Up to our knowledge, it exists no other algorithm to decide of polynomial
ε-primality without computing an ε-GCD. In this paper, we solve this poly-
nomial ε-primality problem thanks to the set of pseudozeros. We will explain
later why separate pseudozeros of Figure 1 prove that p and q are 0.2-coprime.
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Fig. 1. ε-pseudozero set of the polynomials p = z2 and q(z) = (z − 1)2 with ε = 0.2
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3 Definition and computation of the ε-pseudozero set

In this section, we review definition and properties of pseudozeros from Mosier
[18], Trefethen and Toh [25], Chatelin and Frayssé [4] and Stetter [24].

3.1 Definition of the ε-pseudozero set

The set Pn denotes the set of polynomials with complex coefficients and de-
gree at most n, and Mn the monic polynomials of degree n with complex
coefficients. Let p ∈ Pn given by

p(z) = p0 + p1z + · · ·+ pnz
n. (1)

Representing polynomial p by the vector of its coefficients, we choose the norm
‖ · ‖ on Pn being the norm on C

n+1 of the polynomial coefficient vector.
For this norm, we define an ε-neighborhood of p to be the set of all polynomials
of degree at most n, closed enough to p, that is,

Nε(p) = {p̂ ∈ Pn : ‖p− p̂‖ 6 ε} . (2)

Then the ε-pseudozero set of p is defined to include all the zeros of the ε-
neighborhood of p. A non constructive definition of this set is

Zε(p) = {z ∈ C : p̂(z) = 0 for p̂ ∈ Nε(p)} . (3)

3.2 A computable form of the ε-pseudozero set

The following theorem proves that the ε-pseudozero set can be obtain as a
level contour of an easily computable function.

Theorem 3 The ε-pseudozero set verifies

Zε(p) =

{
z ∈ C : |g(z)| =

|p(z)|

‖z‖∗
6 ε

}
, (4)

where z = (1, z, . . . , zn) and ‖ · ‖∗ is the dual norm of ‖ · ‖.

Proof. We remind that the dual norm ‖ · ‖∗ on Cn+1 is defined by

‖x‖∗ = max
z 6=0

|ztx|

‖z‖
= max

‖z‖=1
|ztx|.
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If z ∈ Zε(p) then it exists p̂ ∈ Pn such that p̂(z) = 0 et ‖p − p̂‖ 6 ε. From
Hölder’s inequality |xty| 6 ‖x‖‖y‖∗, we get

|p(z)| = |p(z)− p̂(z)| = |
n∑

i=0

(pi − p̂i)z
i| 6 ‖p− p̂‖‖z‖∗.

It follows |p(z)| 6 ε‖z‖∗.

To prove the reciprocal, let u ∈ C be such that |p(u)| 6 ε‖u‖∗. The dual
vector d of u verifies d∗u = ‖u‖∗ and ‖d‖ = 1 [11, p. 278]. Let us introduce
the polynomials r and pu defined by

r(z) =
n∑

k=0

rkz
k with rk = dk, (5)

pu(z) = p(z) −
p(u)

r(u)
r(z). (6)

This polynomial pu is (with respect to the norm ‖ · ‖) the nearest polynomial
of p with u as a root. It is clear that r(u) = dtu = ‖u‖∗. So we have

‖p− pu‖ =
|p(u)|

|r(u)|
‖r‖ 6 ε‖d‖.

As ‖d‖ = 1, we get
‖p− pu‖ 6 ε.

And since pu(u) = 0, u belongs to Zε(p). 2

3.3 Computing the ε-pseudozero set

Theorem 3 provides a computable expression for the ε-pseudozero set. It con-
sists in evaluating a normalized form of polynomial p on a grid of the complex
plane and comparing its value to the ε parameter.

MATLAB software, for example, provides primitives that allow us to plot pseu-
dozeros with the following very simple Algorithm 1. Such an implementation
is similar to existing pseudospectra software [6].

Without loss of generality, we assume a part of the complex plane has been
chosen and discretized with a squared grid. Let L be the length of this square
and h the step of discretization. The evaluation of g(u) needs the evaluation
of a polynomial, that costs O(n) operations, plus the computation of the
norm of a vector whose complexity depends on the norm. For example, the
computation of the ‖ · ‖1 requires n − 1 operations and ‖ · ‖2 requires 2n
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Algorithm 1 Computation of ε-pseudozero set (MATLAB version)

Require: polynomial p and precision ε
Ensure: pseudozero set layout in the complex plane
1: We grid a square containing all the roots of p with the MATLAB command

meshgrid.
2: We compute g(z) at the grid nodes z.
3: We draw the level line |g(z)| = ε with the MATLAB command contour.

operations. Let us denote O(‖ · ‖∗) this complexity. The complexity of the
whole algorithm is in O(dL/he2(n + ‖ · ‖∗)).
Computing the pseudozero set has a lower complexity than computing the
pseudospectra of the companion matrix. Indeed the pseudozero set requires
the evaluation of a polynomial that costs O(n) whereas O(n3) operations are
necessary for the pseudospectra that uses SVD computations, and so for every
node of the grid.

Previous results for pseudozeros are independent of the polynomial norm ‖ · ‖
that measures the coefficient perturbations. In practice, it is interesting to dis-
tinguish normwise and componentwise perturbations. The first ones describe
every coefficient perturbations whereas the latter globally apply to the vector
of coefficients. We expand the computable form of Theorem 3 for these two
types of perturbations.

3.4 Pseudozeros for normwise perturbations

Let p(z) = p0 + p1z + · · ·+ pnz
n and p̂ a perturbed polynomial of p. We define

the normwise norm by

‖p− p̂‖N =
‖p− p̂‖

β
,

where ‖ · ‖ is a norm on the polynomials and β is a real. We usually choose
β = ‖p‖ to have a relative norm.

For such normwise perturbations, Theorem 3 gives the following result.

Corollary 4 The ε-pseudozero set with normwise perturbations satisfies

ZN
ε (p) =

{
z ∈ C :

|p(z)|

‖z‖∗β
6 ε

}
, (7)

where z = (1, z, . . . , zn) and ‖ · ‖∗ is the dual norm of ‖ · ‖.
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3.5 Pseudozeros for componentwise perturbations

We define the componentwise norm by

‖p− p̂‖C = max
i

|pi − p̂i|

fi
,

where (fi)i=0,...,n are non-negative real numbers. Usually, we take fi = |pi| in
order to have a relative norm. This perturbation provides a detailed description
of the finite precision effect when the polynomial coefficient are represented
with floating point numbers.

Theorem 3 now gives the following result.

Corollary 5 The ε-pseudozero set with componentwise perturbations satisfies

ZC
ε (p) =

{
z ∈ C :

|p(z)|
∑n

i=0 |fi||z|i
6 ε

}
. (8)

4 First answers to approximate algebraic problems with pseudoze-

ros

In this section, we present five first applications of pseudozeros. The two first
ones focus on root computation in finite precision and are similar to results
already presented in [25] for example. Two new applications are proposed to
solve stability problems of polynomials that are very classic in system con-
trol. The last application illustrates a well-known result about the attainable
accuracy when computing multiple polynomial roots.

4.1 A famous perturbed polynomial

The effect of finite precision representation of polynomial coefficients is simply
illustrated with pseudozeros. Figure 2 is the well-known ε-pseudozero set of
the Wilkinson polynomial

W20(z) = (z − 1)(z − 2) · · · (z − 20),

where every coefficient is relatively perturbed with ε = 2−24 (componentwise
perturbations). This choice modelizes the behavior of W20 when it appears in
computation processed with IEEE-754 single precision arithmetic [13].
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Fig. 2. ε-pseudozero set of Wilkinson polynomial for relative componentwise per-
turbation ε = 2−24.

This plotting proves that a backward stable algorithm performed in IEEE-754
single precision may not be sufficient to isolate the roots 4, 5, . . . , 20 of W20.

4.2 How much accuracy to compute the roots of this famous polynomial?

Figure 3 shows the evolution of the ε-pseudozero set of W20 when refining the
precision ε. In these cases, we come back to the more classic localized per-
turbation of the z19 coefficient in a componentwise way. It is well known that
extremal roots between 10 and 20 are less sensitive to coefficient perturbations
than interior ones [26]. Pseudozeros illustrate very well this property.

These plots also give us the minimal precision necessary to represent the co-
efficients of a polynomial implementing W20 at precision ε such that its roots
are still isolated. Here a binary mantissa of at least 33 bits is necessary to
guarantee this property. From an algorithm point of view, this means one
have to choose an algorithm that provides a backward error bounded by 2−33.
Hence, a backward stable algorithm running (at least) at this precision will
compute approximate roots of W20 that are guaranteed to belong to distinct
connected components of the pseudozero, i.e., every connected component of
the pseudozero includes only one approximate root of W20.
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(a) ε = 2−23
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(b) ε = 2−29
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(c) ε = 2−32
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(d) ε = 2−33

Fig. 3. Pseudozero set of the polynomial W20 for different values of ε.

4.3 Deciding of polynomial stability : a first criterion

The ε-pseudozero set can be used to decide the stability of system described
by polynomials. A classic stability criterion in control theory is to compare
the modulus roots to 1 (Schur stability). When the polynomial coefficients are
known with a tolerance ε, it is difficult to compute every root of all polynomials
in its ε-neighborhood. Of course, sensitivity analysis that uses the condition
number of the polynomial with respect to its coefficients can be performed and
yields a first order criterion. Pseudozeros provide an alternative answer to this
question without neglecting higher order effects of coefficient uncertainties. It
suffices to draw the ε-pseudozero set and verify if it is included in the unit
circle.

Figure 4 shows the ε-pseudozero set of polynomial p(z) = (z − 0.8)2 with two
coefficient uncertainties ε = 0.1 and ε = 0.01.

From this figure, we cannot decide the stability for ε = 0.1 because some 0.1-
pseudozeros have modulus larger than 1. On the other hand, the figure proves
that all the 0.01-pseudozeros have modulus less than 1 and so we conclude for
stability while ε ≤ 0.1.
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Fig. 4. ε-pseudozero set of the polynomial p(z) = (z−0.8)2 with ε = 0.1 and ε = 0.01

4.4 Deciding of polynomial stability : a second criterion

Another kind of stability is defined when the real part of all the roots of a
polynomial are negative (Hurwitz stability). For testing this other stability
criterion, it suffices to draw the ε-pseudozero set and verify if it is included
in the left half-plane. This is shown in Figure 5. We exhibit for example that
polynomial p(z) = (z + 1)2 is stable if ε = 0.4.

−5 −4 −3 −2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 5. ε-pseudozero set of the polynomial p(z) = (z + 1)2 with ε = 0.4

We may be interested in the stability of this polynomial but also in the
minimum distance from a stable polynomial to the nearest unstable poly-
nomial. This quantity, called the stability radius, is defined as follows. Let
a(p) = max{Re(z) : p(z) = 0} be the abscissa mapping for a polynomial
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p ∈ Mn. Hence, a stable polynomial satisfies a(p) < 0. The stability radius is
defined to be

β(p) = min{‖p− q‖ : q ∈ Mn and a(q) = 0}.

Considering the 2-norm, we verify that

Zε(p) = {(x, y) ∈ R
2 : hε,p(x, y) 6 0}.

where hε,p is the function from R2 to R defined by

hε,p(x, y) = |p(x + iy)|2 − ε2

n−1∑

j=0

(x2 + y2)j. (9)

For a given x0, function hε,p(x0, y) is a polynomial of degree 2n, and so is
hε,p(x, y0) for a given y0. In [8], we derive a bisection algorithm to compute
the stability radius β(p) using this expression of the pseudozero set.

The first natural example is p(z) = z + 1. Of course, the nearest unstable
polynomial of p is q(z) = z and then β(p) = 1. If we apply the bisection
algorithm, we find β = 0.999996 with a absolute tolerance equals to 0.00001.
We plot the 0.999996-pseudozero set on Figure 6 to verify it.

−2.5 −2 −1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 6. ε-pseudozero set for p(z) = z + 1 with ε = 0.999996 ≈ β(p)

Let us now compute the stability radius of p(z) = (z − 1)(z − 1/2). Our
algorithm yields β = 0.485868 with a tolerance 0.00001. Figure 7 presents
the corresponding 0.485868-pseudozero set. It confirms that this perturbation
limits the (Hurwitz) stability domain of considered polynomial.

4.5 Attainable accuracy of multiple root

A last application of pseudozeros illustrates the well-known “rule of thumb”
that describes the attainable accuracy of a polynomial multiple root computed
in precision ε: this accuracy is of the order of ε1/m where m is the multiplicity
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Fig. 7. ε-pseudozero set for p(z) = z2 + z + 1/2 with ε = 0.485868 ≈ β(p)

of the root (ε < 1). Another interpretation of this “rule of thumb” is that a
backward stable algorithm needs a precision of at least εm to compute a root
of multiplicity m satisfying an accuracy of the order of ε. This property is
still valid for every polynomial that admits a polynomial with a m multiple
root in its ε-neighborhood. We verify this property computing for example the
ε-pseudozeros of polynomials

p1(z) = z − 1,

p2(z) = (z − 1)2,

p3(z) = (z − 1)3,

with, respectively, ε1 = ε, ε2 = ε2, ε3 = ε3 and ε = 10−1. Figure 8 exhibits
that the three sets Zε1

(p1), Zε2
(p2), and Zε3

(p3) are very similar (right side)
compared to the ε-pseudozeros Zε of polynomials p1, p2 and p3 (left side).
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(a) Zε of p1, p2, p3 and ε = 10−1
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(b) Pseudozero sets Zε(p1), Zε2(p2),
Zε3(p3) for ε = 10−1

Fig. 8. Comparison of different pseudozeros with respect to the root multiplicity

Now, we present how to solve the polynomial primality problem thanks to the
pseudozero set.
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5 Polynomial primality and ε-pseudozero set

Let p and q belonging respectively to Pn and Pm. It follows from Definition 2
that p and q are ε-coprime if and only if for all p̂ ∈ Nε(p), q̂ ∈ Nε(p), the
polynomials p̂ and q̂ are coprime.

The following proposition gives an answer to decide whether p and q are ε-
coprime.

Proposition 6 We have the two following assertions.

(1) if the intersection of the ε-pseudozero sets of p and q is empty then the
two polynomials are ε-coprime,

(2) if the intersection is not empty then they are not ε-coprime.

Proof. Let p and q be two polynomials with complex coefficients. If Zε(p) ∩
Zε(q) = ∅ then from the ε-pseudozero set definition, we cannot find p̂ ∈ Nε(p)
and q̂ ∈ Nε(q) having a common root. It means that p and q are ε-coprime.
If now Zε(p) ∩ Zε(q) 6= ∅, then let us take a ∈ Zε(p) ∩ Zε(q). It means that it
exists p̂ ∈ Nε(p) and q̂ ∈ Nε(q) such that p̂(a) = 0, and q̂(a) = 0. Hence the
polynomial (z − a) divide p̂ and q̂. Therefore p et q are not ε-coprime. 2

We apply this property considering, for example, p and q, where

p(z) = z2 − 3.999z + 3.001, and q(z) = z2 − 3.001z + 1.999.

Figure 9 presents the ε-pseudozero sets of these two polynomials for two values
of ε (0.0009 and 0.002). On the left hand side plotting, the intersection is
empty so the two polynomial p and q are 0.0009-coprime. On the contrary, the
intersection is not empty on the right hand plotting, so p and q are not 0.002-
coprime. Here the perturbations due to coefficient reprsentation are neglected
compared to presented values of ε.

Another example of the practical interest of this application of pseudozeros
has been presented at the beginning of this paper to exhibit the weakness of
the MATLAB function AreCoprime.

A more difficult problem is to compute the minimum perturbation that trans-
forms two co-prime polynomials into non co-prime ones, i.e., the minimum dis-
tance to the singularity for the polynomial primality problem. Using pseudoze-
ros with a bisection algorithm is a natural idea to yield this minimum distance.
Alas this approach needs to compute the intersection of two level contours,
that is, for the 2-norm, to solve the system f1(x, y) = h1 and f2(x, y) = h2,
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Fig. 9. ε-pseudozero set for different values of ε of the polynomials p and q.

where fi is a bivariate polynomial of degree 2n. Up to our knowledge, this
computation is also a difficult problem.

6 Computing ε-pseudozero set in finite precision

In this last section, we discuss two aspects of the finite precision computation
of ε-pseudozero set.

6.1 How can we a priori choose the grid?

The initial grid must satisfy the two following conditions:

Condition a. Zeros and pseudozeros are included in its range;
Condition b. Roots are isolated by the grid discretization.

We discuss how to fulfill these conditions.

Condition a. Pseudozero set of monic polynomials are bounded (that is not
guaranteed for arbitrary polynomials). So we restrict our pseudozero compu-
tation to monic polynomials p in Mn. So now, for a polynomial p in Mn, we de-
note Nε(p) = {p̂ ∈ Mn : ‖p− p̂‖ 6 ε} and Zε(p) = {z ∈ C : p̂(z) = 0 for p̂ ∈ Nε(p)}.
In this case, the centered square [−R, R] × [−R, R] where

R = max

{
1,

n−1∑

k=0

|pk|+ nε

}
,

ensures Condition a is satisfied. Let us prove this result.

Let p in Mn and {zi} the set of its n roots. The maximum root modulus verifies
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r = max
i=1,...,n

|zi| 6 max

{
1,

n−1∑

k=0

|pk|

}

(see for example [17, p.154]). Let z be in Zε(p), it exists p̂ ∈ Nε(p) such
that p̂(z) = 0. The modulus of this root z is bounded by the maximum root
modulus of p̂. So we have the inequality

|z| 6 max

{
1,

n−1∑

k=0

|p̂k|

}
.

Assuming that the perturbation norm is an Hölder h-norm ‖ · ‖h, we know
that ‖p− p̂‖h 6 ε. Since ‖ · ‖∞ 6 ‖ · ‖h, ‖p− p̂‖∞ 6 ε. Then |pk − p̂k| 6 ε and
we have |p̂| 6 |pk|+ ε for all k = 0, . . . , n− 1. Hence,

|z| 6 max

{
1,

n−1∑

k=0

|pk|+ nε

}
= R.

We conclude that Zε(p) ⊂ B(0, R), where B(0, R) is the closed ball of center
0 and of radius R.

The drawbacks of this method is that if the polynomial coefficients are large
then the grid can be very large whereas the roots are small. Other bounds for
the roots may provide better results in this case (see [17] for instance).

Condition b. We need a grid that ensures the roots of p are isolated. The
discretization step of the grid must be chosen consequently. The following two
lower bounds on the distance between two distinct zeros of a polynomial are
proposed by Rump [27] and Mignotte [17]. If {zi} is the set of its n roots, we
have

min |zi − zj|>

√
8

nn+2

1

1 + ‖p‖n
∞

=: γ1 (Rump),

min |zi − zj|>

√
3

nn+2

1

‖p‖n−1
2

=: γ2 (Mignotte).

For the drawing of the pseudozero sets, we choose the grid [−R, R]× [−R, R]
described before with the step γ1.

6.2 Accuracy limitation due to the finite precision evaluation of p(z)

The computation of the pseudozero set consists in the evaluation of the func-
tion g(z) = p(z)/f(z) (where p is a polynomial and f a norm) performed
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at every node of the chosen grid. For usual norms, we have f(z) > 1 and
the associated computing error is negligible. The error in the evaluation of
polynomial p has to be considered.

Let y be the evaluation of p(z) using the Hörner’s scheme. The following result
of Kahan [20],

|y − p(z)| 6 4u
n∑

i=0

|siz
i| =: η with si =

n∑

j=i

pjz
j−i,

defines a precise a priori bound η of the error between p and its evaluation in
the finite precision u. Then no reliable interpretation of ε-pseudozeros can be
proposed when ε < η.

From a practical point of view, it is then necessary to increase the computing
precision u to guarantee a reliable evaluation of ε-pseudozeros. The running
error bound of the rounding error in the polynomial evaluation yields both a
more realistic bound of the error and, more importantly, an effective dynamic
control of this error. The classic algorithm to compute this a posteriori error
estimation for the Hörner scheme is given, for example, in [10, p.95]. Then it
suffices to compare this computed bound to ε, and when is is necessary, to
decide to increase the precision for example by using multiprecision library
like [1] or MPFR [9] for example.

We limit this discussion on finite precision effects on pseudozeros to these two
aspects. Of course, others limitations exist like for example the approxima-
tion error introduced by the MATLAB command contour. Future work will
complete this analysis.

7 Conclusion

We have shown that plotting pseudozeros can give qualitative and sometimes
quantitative interesting informations about the behavior of polynomials used
in a finite precision environment. They offer a powerful tool to test the ε-
primality of two polynomials and for example the stability and robustness of
polynomials. They can be easily plotted used popular software as MATLAB.

We hope that pseudozeros will be used as much as pseudospectra since it
seems to us that it could be useful for application fields as CGAD, control
and network theory for example.
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