
Numer Algor (2015) 70:653–667
DOI 10.1007/s11075-015-9967-8

ORIGINAL PAPER

On the maximum relative error when computing
integer powers by iterated multiplications
in floating-point arithmetic

Stef Graillat ·Vincent Lefèvre ·Jean-Michel Muller

Received: 31 March 2014 / Accepted: 18 January 2015 / Published online: 1 February 2015
© Springer Science+Business Media New York 2015

Abstract We improve the usual relative error bound for the computation of xn

through iterated multiplications by x in binary floating-point arithmetic. The obtained
error bound is only slightly better than the usual one, but it is simpler. We also discuss
the more general problem of computing the product of n terms.

Keywords Floating-point arithmetic · Rounding error · Accurate error bound ·
Exponentiation

Mathematics Subject Classification (2010) 15-04 · 65G99 · 65-04

1 Introduction

1.1 Floating-point arithmetic and rounding errors

When critical applications are at stake, one may need certain yet tight error bounds on
the results of numerical computations. The manipulation of these error bounds (either
paper-and-pencil manipulation, or dynamical error analysis) will be made easier if
these bounds are simple. This paper deals with the calculation of a certain, tight and

S. Graillat (�)
Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France
e-mail: stef.graillat@lip6.fr

S. Graillat
CNRS, UMR 7606, LIP6, F-75005, Paris, France

V. Lefèvre
Inria, Laboratoire LIP, Université de Lyon, Lyon, France

J. M. Muller
CNRS, Laboratoire LIP, Université de Lyon, Lyon, France

mailto:stef.graillat@lip6.fr

654 Numer Algor (2015) 70:653–667

simple error bound for the evaluation of integer powers by the iterative algorithm in
floating-point arithmetic.

In the following, we assume a radix-2, precision-p, floating-point (FP) arithmetic.
To simplify the presentation, we assume an unbounded exponent range: our results
will be applicable to “real life” floating-point systems, such as those that are compli-
ant with the IEEE 754-2008 Standard for Floating-Point Arithmetic [3, 7], provided
that no underflow (i.e., no subnormal values are generated) or overflow occurs (the
underflow/overflow issues are briefly discussed in Section 5). In such an arithmetic,
a floating-point number is either zero or a number of the form

x = X · 2ex−p+1,

where X and ex are integers, with 2p−1 ≤ |X| ≤ 2p − 1.
We assume that the arithmetic operations are correctly rounded, and that round-

ing to nearest is used. We denote by RN the rounding function (which means that
when the operation a�b is performed, the returned value is RN(a�b)). Our error
bounds will be given assuming, for the rounding function RN, any choice in case of
a tie. However, when we build examples (for instance for checking how tight are the
obtained bounds), we use round to nearest ties to even.

Recently, classic error bounds for summation and dot product have been improved
by Jeannerod and Rump [5, 8]. They have considered the problem of calculating the
sum of n FP numbers x1, x2, . . . , xn. If we call float(

∑n
i=1 xi) the computed result

and u = 2−p the rounding unit, they have shown that
∣
∣
∣
∣
∣
float

(
n∑

i=1

xi

)

−
n∑

i=1

xi

∣
∣
∣
∣
∣
≤ (n − 1) · u

n∑

i=1

|xi | (1)

(notice that there is no restriction on n), which is better than the previous bound
[2, p.63]

∣
∣
∣
∣
∣
float

(
n∑

i=1

xi

)

−
n∑

i=1

xi

∣
∣
∣
∣
∣
≤ γn−1

n∑

i=1

|xi |

where1

γn = n · u

1 − n · u
(2)

We are interested in finding if a similar simplification is possible in the particular
case of the computation of an integer power xn. More precisely, we wish to know if
for “reasonable” values of n the result computed using the “naive”, iterative, algo-
rithm (Algorithm 1 below) is always within relative error (n − 1) · u from the exact
result.

We performed exhaustive tests in binary32 (single precision) for all x ∈ [1; 2[
until overflow for xn, and the relative error was always less than (n − 1) · u.

1We assume that n · u < 1 when using γn.

Numer Algor (2015) 70:653–667 655

In this paper, we prove—under mild hypotheses—that this result holds for all “rea-
sonable” floating-point formats (we need the precision p to be larger than or equal to
5, which is always true in practice), provided that n is less than

√
21/3 − 1/

√
u. This

restriction on n, discussed in Section 3.3, is not a problem for wide FP formats (e.g.,
binary64 or larger). It may be a significant constraint for small formats (binary32 or
smaller).

1.2 Relative error due to roundings

Let a and b be floating-point numbers whose product z = ab is positive. Let ẑ =
RN(z) be their computed product. It is well known that

(1 − u) · z ≤ ẑ ≤ (1 + u) · z. (3)

Now, assume that we wish to evaluate the non-negative product a1 · a2 · · · an of n

floating-point numbers, and that the product is evaluated as

RN(RN(· · ·RN(RN(a1 · a2) · a3) · · · ·) · an). (4)

Define πn as the exact value of a1 · · · an, and π̂n as the computed value. A simple
induction, based on (3), allows one to show

Theorem 1 Let a1, . . . , an be floating-point numbers whose product is nonnegative,
πn = a1 · · · an, and π̂n the computed value using (4). Then we have

(1 − u)n−1πn ≤ π̂n ≤ (1 + u)n−1πn. (5)

Therefore, the relative error of the computation, namely |π̂n − πn|/πn is upper-
bounded by (1+u)n−1 − 1, which is less than γn−1 as long as (n− 1) ·u < 1 (which
always holds in practical cases). See for instance [1].

In our experiments, we always observed a relative error less than (n − 1) · u for
n until � 2p/2. If this was a valid bound, it would be slightly better, and easier to
manipulate than γn−1. In the general case of an iterated product, we did not succeed in
proving that. We could only automatically build cases for which the attained relative
error is extremely close to, yet not larger than, (n−1) ·u for n � 2p/2 (see Section 6).
We also found counterexamples2 (in the special case of the computation of xn) for
n ≈ 2p. However, in the particular case n ≤ 4, one can easily prove that the relative
error is less than (n − 1) · u. This is done as follows.

First, as noticed by Knuth [6], and later on used by Jeannerod and Rump [4] to
improve classical results, the bound u on the relative error due to rounding can be

2Good candidates are machine numbers less than but very close to 2m/q , where m and q are small integers,
such that π̂k+q and π̂k have the same significand for some k.

656 Numer Algor (2015) 70:653–667

slightly improved: if t is a floating-point number, then |t − RN(t)|/t ≤ u/(1 + u)

(incidentally, if RN is round-to-nearest ties to even, that bound is attained when t =
1 + u, which shows that the bound cannot be improved further).

A consequence of this is that u can be replaced by u/(1+ u) in (5). In the general
case (that is, for any n), this improvement does not suffice to show that the rela-
tive error is less than (n − 1) · u, and yet, when n ≤ 4, we can use the following
result.

Property 1 If k ≤ 3 then

(

1 + u

1 + u

)k

< 1 + k · u.

Proof Straightforward by separately considering the cases k = 1, 2, and 3.

By taking k = n − 1, we immediately deduce that for n ≤ 4, the relative error of
the iterative product of n FP numbers is bounded by (n − 1) · u.

1.3 The particular case of computing powers

In the following, we are interested in computing xn, where x is a FP number
and n is an integer. One shows by induction that the bound provided by The-
orem 1 applies not only to the case that was discussed above (computation of
RN(· · ·RN(RN(x · x) · x) · · · ·) · x) but to the larger class of recursive algorithms
where the approximation to xk+� is deduced from approximations to xk and x� by
a FP multiplication. However, we will prove a (slightly) better bound only in the
case where the algorithm used for computing xn is Algorithm 1 below (i.e., we
compute powers using iterated multiplications). Incidentally, when n is not known
at compile-time (i.e., it is not a constant), computing xn using a “smart” algorithm
such as exponentiation by squaring is not so efficiently implementable in modern
pipeline architectures, and it also requires tests that may be slow (because of non-
predictable branches) in front of a floating-point multiplication. Hence, although the
logarithmic-time smart algorithms necessarily beat the linear-time iterated product
algorithm ultimately, our tests show that this is not the case until n is around 10. Also,
there are a few applications where one needs to know all the powers xi , i ≤ n of a
given number x. For these applications, obviously, the iterated product algorithm is
of interest.

Numer Algor (2015) 70:653–667 657

We wish to prove

Theorem 2 Assume p ≥ 5. If

n ≤
√
21/3 − 1 · 2p/2,

then
∣
∣̂xn − xn

∣
∣ ≤ (n − 1) · u · ∣

∣xn
∣
∣ .

To prove Theorem 2, it suffices to prove it in the case 1 ≤ x < 2: in the following
we will therefore assume that x lies in that range.

We prove Theorem 2 in Section 3. Before that, in Section 2, we give some pre-
liminary results. In Section 4, we discuss the tightness of our new bound, and in
Section 5, we raise brief remarks about possible underflow/overflow issues. Section 6
is devoted to a discussion on the possible generalization of this bound to the product
of n floating-point numbers.

2 Preliminary results

Let us start with an easy remark.

Remark 1 Since (1−u)n−1 ≥ 1− (n−1) ·u for all n ≥ 2 and u ∈ [0, 1], (5) suffices
to show that (1 − (n − 1) · u) · xn ≤ x̂n. In other words, to establish Theorem 2, we
only need to show that x̂n ≤ (1 + (n − 1) · u) · xn.

We also have,

Lemma 1 Let t be a real number. If

2e ≤ w · 2e ≤ |t | < 2e+1, e ∈ Z (6)

then
∣
∣
∣
∣
RN(t) − t

t

∣
∣
∣
∣ ≤ u

w
.

Lemma 1 is a straightforward consequence of the relations |RN(t) − t | ≤ u · 2e

and w · 2e ≤ |t |.
For t �= 0, we will define t as the significand of t , namely

t = t

2	log2 |t |
 .

Lemma 1 is at the heart of our study: if at least once in the execution of Algorithm
1, x · x̂k−1 is such that x · x̂k−1 is large enough to sufficiently reduce the error bound
on the corresponding FP multiplication x̂k ← RN(x · x̂k−1), then the overall relative
error bound becomes smaller than (n − 1) · u. More precisely, we will show that,

658 Numer Algor (2015) 70:653–667

under some conditions, at least once, x · x̂k−1 is larger than 1+n2u, so that in (5) the
term (1 + u)n−1 can be replaced by

(1 + u)n−2 ·
(

1 + u

1 + n2u

)

.

Therefore, we need to bound this last quantity. We have,

Lemma 2 If 0 ≤ u ≤ 2/(3n2) then

(1 + u)n−2 ·
(

1 + u

1 + n2u

)

≤ 1 + (n − 1) · u. (7)

Proof Proving Lemma 2 reduces to proving that the polynomial

Pn(u) = (1 + (n − 1)u)(1 + n2u) − (1 + u)n−2(1 + n2u + u)

is ≥ 0 for 0 ≤ u ≤ 2/(3n2).
Notice that for u ≥ 0, we have

ln(1 + u) ≤ u − u2

2
+ u3

3
.

From ln(1 + u) ≤ u we also deduce that (n − 2) ln(1 + u) ≤ (n − 2)u ≤ 1/(2n).
For 0 ≤ t ≤ 1/6, et ≤ 1 + t + 3

5 t
2. Therefore, for 0 ≤ u ≤ 2/3n2, to prove that

Pn(u) ≥ 0 it suffices to prove that

Q(n, u) = (1 + (n − 1) u)
(
n2u + 1

)

−
(
1 + (n − 2)

(
u − 1/2 u2 + 1/3 u3

) + 3/5 (n − 2)2
(
u − 1/2 u2 + 1/3 u3

)2
)

× (
n2u + u + 1

) ≥ 0.
(8)

By defining a = n2u, Q(n, u) = R(n, a), with

R(n, a) = − 1
5

a2(3 a−2)
n2

+ 1
10

a2(29 a+19)
n3

+ 1
5

a2
(
3 a2−17 a−7

)

n4

− 1
30

a3(82 a−5)
n5

− 1
60

a3
(
33 a2−187 a+20

)

n6
+ 1

15
a4(33 a−8)

n7

+ 1
60

a4
(
12 a2−153 a+52

)

n8
− 1

5
a5(4 a−7)

n9
− 1

15
a5

(
a2−14 a+21

)

n10

+ 4
15

a6(a−2)
n11

− 1
15

a6(5 a−8)
n12

+ 4
15

a7

n13
− 4

15
a7

n14

(9)

Numer Algor (2015) 70:653–667 659

Multiplying R(n, a) by 5n2/a2, we finally obtain

S(n, a) = −3 a + 2 +
(
29
2 a + 19

2

)
n−1 + 3 a2−17 a−7

n2
− 1

6
a(82 a−5)

n3

− 1
12

a
(
33 a2−187 a+20

)

n4
+ 1

3
a2(33 a−8)

n5
+ 1

12
a2

(
12 a2−153 a+52

)

n6

− a3(4 a−7)
n7

− 1
3

a3
(
a2−14 a+21

)

n8
+ 4

3
a4(a−2)

n9
− 1

3
a4(5 a−8)

n10

+ 4
3

a5

n11
− 4

3
a5

n12

(10)

We wish to show that S(n, a) ≥ 0 for 0 ≤ a ≤ 2/3. Let us examine the terms of
S(n, a) separately. For a in the interval [0, 2/3] and n ≥ 3:

• the term −3 a + 2 is always larger than 0;

• the term
29
2 a+ 19

2
n

is always larger than 19/(2n);

• the term 3 a2−17 a−7
n2

is always larger than −6/n;

• the term − 1
6

a(82 a−5)
n3

is always larger than −7/(10n);

• the term − 1
12

a
(
33 a2−187 a+20

)

n4
is always larger than −17/(10000n);

• the term 1
3

a2(33 a−8)
n5

is always larger than −3/(10000n);

• the term 1
12

a2
(
12 a2−153 a+52

)

n6
is always larger than −69/(10000n);

• the term − a3(4 a−7)
n7

is always larger than 0;

• the term − 1
3

a3
(
a2−14 a+21

)

n8
is always larger than −6/(10000n);

• the term 4
3

a4(a−2)
n9

is always larger than −6/(100000n);

• the term − 1
3

a4(5 a−8)
n10

is always larger than 0;

• the term 4
3

a5

n11
is always larger than 0;

• the term − 4
3

a5

n12
is always larger than −1/(1000000n).

By summing all these lower bounds, we find that for 0 ≤ a ≤ 2/3 and n ≥ 3,
S(n, a) is always larger than 2790439/(1000000n).

Let us deduce two consequences of Lemma 2. The most important is Lemma 3
below, which is the basis of almost all subsequent results. It says that if in Algorithm
1 at least one rounding is done towards zero, the desired result is obtained.

Lemma 3 Assume n ≤ √
2/3 · 2p/2. If for some k ≤ n, we have RN(x · x̂k−1) ≤

x · x̂k−1, then x̂n ≤ (1 + (n − 1) · u)xn.

Proof We have
x̂n ≤ (1 + u)n−2xn.

Lemma 2 implies that (1 + u)n−2 is less than 1 + (n − 1) · u. Therefore,

x̂n ≤ (1 + (n − 1) · u)xn.

660 Numer Algor (2015) 70:653–667

Now, by combining Lemma 1 and Lemma 2, if there exists k, 1 ≤ k ≤ n−1, such
that

x · x̂k ≥ 1 + n2 · u,

then

x̂n ≤ (1 + u)n−2 ·
(

1 + u

1 + n2u

)

· xn ≤ (1 + (n − 1) · u) · xn,

so that:

Remark 2 Assume n ≤ √
2/3 · 2p/2. If there exists k, 1 ≤ k ≤ n − 1, such that

x · x̂k ≥ 1 + n2 · u, then x̂n ≤ (1 + (n − 1) · u)xn.

3 Proof of Theorem 2

The proof is articulated as follows.

• First, we show that if x is close enough to 1, then when computing RN(x2), the
rounding is done downwards (i.e., RN(x2) ≤ x2), which implies, from Lemma
3, that x̂n ≤ (1 + (n − 1) · u)xn. This is the purpose of Lemma 4.

• Then, we show that in the other cases, there is at least one k ≤ n − 1 such that
x · x̂k ≥ 1+n2 ·u, which implies, from Remark 2, that x̂n ≤ (1+ (n− 1) ·u)xn.

Lemma 4 Let x = 1+ k · 2−p+1 = 1+ 2ku, where k ∈ N (all FP numbers between
1 and 2 are of that form). We have x2 = 1 + 2k · 2−p+1 + k2 · 2−2p+2, so that if
k < 2p/2−1, i.e., if 1 ≤ x < 1 + 2p/2u, then x̂2 = 1 + 2k · 2−p+1 < x2, which, by
Lemma 3, implies x̂n ≤ (1 + (n − 1)u) · xn.

Assume u ≤ 2/(3n2), i.e., n <
√
2/3 · 2p/2 (later on, we will see that a stronger

assumption is necessary). Remark 2 and Lemma 4 imply that to prove Theorem 2, we
are reduced to examine the case where 1 + 2p/2u ≤ x < 2. For that, we distinguish
between the cases where x2 ≤ 1 + n2u and x2 > 1 + n2u.

3.1 First case: if x2 ≤ 1 + n2u

From x ≥ 1 + 2p/2u ≥ 1 + nu, we deduce

xn ≥ (1 + nu)n > 1 + n2u,

so that, from Lemma 3, we can assume that

x̂n−1 · x > (1 + n2u)

(otherwise, at least one rounding was done downwards, which implies Theorem 2).
Therefore

• if x̂n−1x < 2, then x̂n−1x ≥ (1 + n2u), so that, from Remark 2, xn ≤ (1 + (n −
1) · u) · xn;

Numer Algor (2015) 70:653–667 661

• if x̂n−1x ≥ 2, then let k be the smallest integer such that x̂k−1x ≥ 2. Notice that
since we have assumed that x2 ≤ 1 + n2u, we necessarily have k ≥ 3. We have

x̂k−1 ≥ 2

x
≥ 2√

1 + n2u
,

hence

x̂k−2 · x ≥ 2√
1 + n2u · (1 + u)

. (11)

Now, define

αp =
√

(
2p+1

2p + 1

)2/3

− 1.

For all p ≥ 5, αp ≥ α5 = 0.74509 · · · , and αp ≤ √
22/3 − 1 = 0.7664209 · · · .

If
n ≤ αp · 2p/2, (12)

then

1 + n2u ≤
(

2p+1

2p + 1

)2/3

,

so that
(1 + n2u)3/2 · (1 + u) ≤ 2,

so that
2√

1 + n2u · (1 + u)
≥ 1 + n2u.

Therefore, from (11), we have

x̂k−2 · x ≥ 1 + n2u.

Also, x̂k−2 · x is less than 2, since k was assumed to be the smallest integer such
that x̂k−1x ≥ 2. Therefore

x̂k−2 · x ≥ 1 + n2u,

which implies, by Remark 2, that xn ≤ (1 + (n − 1) · u) · xn. So, to summarize
this first case, if x2 ≤ 1+n2u and n ≤ αp ·2p/2, then the conclusion of Theorem
2 holds.

3.2 Second case: if x2 > 1 + n2u

First, if x2 < 2 then we deduce from Remark 2 that xn ≤ (1 + (n − 1) · u) · xn. The
case x2 = 2 is impossible (x is a floating-point number, thus it cannot be irrational).
Therefore let us now assume that x2 > 2. We also assume that x2 < 2 + 2n2u
(otherwise, we would have (x2) ≥ 1+n2u, so that we could apply Remark 2). Hence,
we have √

2 < x <
√
2 + 2n2u.

From this we deduce
xn−1 < (2 + 2n2u)

n−1
2 ,

662 Numer Algor (2015) 70:653–667

therefore, using Theorem 1,

x̂n−1 < (2 + 2n2u)
n−1
2 · (1 + u)n−2,

which implies
x · x̂n−1 < (2 + 2n2u)n/2 · (1 + u)n−2. (13)

Define
β =

√
21/3 − 1 = 0.5098245285339 · · ·

If n ≤ β · 2p/2 then 2 + 2n2u ≤ 24/3, so that we find

(2 + 2n2u)n/2 · (1 + u)n−2 ≤ 22n/3 · (1 + u)n−2. (14)

• if n = 3, the bound on x · x̂n−1 derived from (13) and (14) is 4 ·(1+u). Therefore
either x · x̂n−1 < 4, or x · x̂n−1 will be rounded downwards when computing x̂n

(in which case we know from Lemma 3 that the conclusion of Theorem 2 holds);
• if n ≥ 4, consider function

g(t) = 2t−1 − 22t/3
(
1 + 2−p

)t−2 = 22t/3
[
2t/3−1 − (

1 + 2−p
)t−2

]
.

It is a continuous function, and it goes to +∞ as t → +∞. We have:

g(t) = 0 ⇔ t = log(2) + 2 log
(
1 + 2−p

)

1
3 log(2) − log

(
1 + 2−p

) .

Hence, g has a single root, and as soon as p ≥ 5, that root is strictly less than 4.
From this, we deduce that if p ≥ 5, then g(t) > 0 for all t ≥ 4. Hence, using
(13) and (14), we deduce that if p ≥ 5 then x · x̂n−1 < 2n−1.

Now that we have shown that3 if n ≤ β · 2p/2 then

x · x̂n−1 < 2n−1,

let us define k as the smallest integer for which x · x̂k−1 < 2k−1. We now know that
k ≤ n, and (since we are assuming x2 > 2), we have k ≥ 3. The minimality of
k implies that x · x̂k−2 ≥ 2k−2, which implies that x̂k−1 = RN(x · x̂k−2) ≥ 2k−2.
Therefore, x̂k−1 and x · x̂k−1 belong to the same binade,4 therefore,

x · x̂k−1 ≥ x >
√
2. (15)

The constraint n ≤ β · 2p/2 implies

1 + n2u ≤ 1 + β2 = 21/3 <
√
2. (16)

By combining (15) and (16) we obtain

x · x̂k−1 ≥ 1 + n2u.

Therefore, using Remark 2, we deduce that x̂n ≤ (1 + (n − 1) · u) · xn.

3Unless n = 3 and x · x̂n−1 ≥ 4 but in that case we have seen that the conclusion of Theorem 2 holds.
4A binade is the interval between two consecutive integer powers of 2.

Numer Algor (2015) 70:653–667 663

3.3 Combining both cases

One easily sees that for all p ≥ 5, αp is larger than β. Therefore, combining the
conditions found in the cases x2 ≤ 1 + n2u and x2 > 1 + n2u, we deduce that if
p ≥ 5 and n ≤ β · 2p/2, then for all x,

(1 − (n − 1) · u) · xn ≤ x̂n ≤ (1 + (n − 1) · u) · xn.

Q.E.D.
Notice that the condition n ≤ β · 2p/2 is not a huge constraint. The table below

gives the maximum value of n that satisfies that condition, for the various binary
formats of the IEEE 754-2008 Standard for Floating-Point Arithmetic.

p nmax
24 2088
53 48385542

113 51953580258461959

For instance, in the binary32/single precision format, with the smallest n larger
than that maximum value (i.e., 2089), xn will underflow as soon as x ≤ 0.95905406
and overflow as soon as x ≥ 1.0433863. In the binary64/double precision format,
with n = 4385543, xn will underflow as soon as x ≤ 0.999985359 and overflow as
soon as x ≥ 1.000014669422.With the binary113/quad precision format, the interval
in which function xn does not under- or overflow is even narrower and, anyway, com-
puting x51953580258461959 by Algorithm 1 would at best require years of computation
on current machines.

4 Is the bound of Theorem 2 tight?

For very small values of p, it is possible to check all possible values of x (we
can assume 1 ≤ x < 2, so that we need to check 2p−1 different values), using
a Maple program that simulates a precision-p floating-point arithmetic. Hence, for
small values of p and reasonable values of n it is possible to compute the actual max-
imum relative error of Algorithm 1. For instance, Tables 1 and 2 present the actual
maximum relative errors for p = 8 and 9, respectively, and various values of n.

For larger values, we have some results (notice that beyond single precision—p =
24—exhaustive testing is either very costly or out of reach):

• for single precision arithmetic (p = 24) and n = 6, the actual largest relative
error is 4.328005619u. It is attained for x = 8473808/223 ≈ 1.010156631;

• for double precision arithmetic (p = 53) and n = 6, although finding the actual
largest relative error would require months of calculation, we could find an inter-
esting case: for x = 4507062722867963/252 ≈ 1.0007689616715527147761,
the relative error is 4.7805779 · · ·u;

664 Numer Algor (2015) 70:653–667

Table 1 Actual maximum relative error of Algorithm 1 assuming precision p = 8, compared with the
usual bound γn−1 and our bound (n−1)u. The term nmax designs the largest value of n for which Theorem
2 holds, namely

√
21/2 − 1 · 2p/2

n Actual maximum γn−1 Our bound

3 1.35988u 2.0157u 2u

4 1.73903u 3.0355u 3u

5 2.21152u 4.06349u 4u

6 2.53023u 5.099601u 5u

7 2.69634u 6.1440u 6u

8 = nmax 3.42929u 7.1967u 7u

• for quad precision arithmetic (p = 113) and n = 6, although finding the actual
largest relative error is out of reach, we could find an interesting case: for

x = 5192324351407105984705482084151108/2112

≈ 1.0000052949345978099886352037496365983,

the relative error is 4.8827888 · · ·u;
• for single precision arithmetic (p = 24) and n = 10, the actual largest relative

error is 7.059603149u. It is attained for x = 8429278/223 ≈ 1.004848242;
• for double precision arithmetic (p = 53) and n = 10, although finding the

actual largest relative error is out of reach, we could find an interesting case: for
x = 4503796447992526/252 ≈ 1.00004370295725975026, the relative error is
7.9534189 · · ·u.

Notice that we can use the maximum relative error of single precision and “inject
it” in the inductive reasoning that led to Theorem 1 to show that in single-precision
arithmetic, and if n ≥ 10 then

(1 − 7.06u)(1 − u)n−10xn ≤ x̂n ≤ (1 + 7.06u)(1 + u)n−10xn.

Table 2 Actual maximum relative error of Algorithm 1 assuming precision p = 9, compared with the
usual bound γn−1 and our bound (n−1)u. The term nmax designs the largest value of n for which Theorem
2 holds, namely

√
21/2 − 1 · 2p/2

n Actual maximum γn−1 Our bound

6 2.677u 5.049u 5u

7 2.975u 6.071u 6u

8 3.435u 7.097u 7u

9 4.060u 8.1269u 8u

10 3.421u 9.1610u 9u

11 = nmax 3.577u 10.199u 10u

Numer Algor (2015) 70:653–667 665

Then, by replacing u by 2−24 and through an elementary study of the function

ϕ(t) =
[
(1 + 7.06 · 2−24)(1 + 2−24)t−10 − 1

]
· 224 − t

one easily deduces that for 10 ≤ n ≤ 2088, we always have
∣
∣
∣
∣
x̂n − xn

xn

∣
∣
∣
∣ ≤ (n − 2.8104) · u.

5 A brief remark on underflow and overflow

As stated in the introduction, the results presented in this paper (assuming an
unbounded exponent range) apply to “real” floating-point arithmetic provided that
no underflow or overflow occur. When considering “general” iterated products, inter-
mediate underflows are a real concern: they may make a final result very inaccurate,
and this may be rather difficult to notice when the IEEE 754 exceptions are not sup-
ported, since the returned final result may lie well in the normal floating-point range.
Overflows are less deceiving, but they may be difficult to manage: one may have an
overflow appearing in an intermediate result (leading to an infinite or NaN final result
being returned) even when the exact product is of magnitude much smaller than the
overflow threshold.

However, when we are concerned with powers only, these pitfalls disappear. One
easily shows that when evaluating a power using Algorithm 1:

• if an intermediate result underflows then the final result will be less than or equal
to the minimum positive normal number in absolute value, so that this will not
go unnoticed;

• if an intermediate result overflows then the exact final result is larger than�/(1+
u)n−1 in absolute value, where � is the largest finite floating-point number.

6 What about iterated products ?

Assume now that, still in precision-p binary FP arithmetic, we wish to evaluate the
product a1 · a2 · · · · · · · an, of n floating-point numbers. We assume that the product
is evaluated as

RN(· · ·RN(RN(a1 · a2) · a3) · · · ·) · an).

Define πk as the exact value of a1 · · · ak , and π̂k as the computed value. As already
discussed in Section 1.2, we have

(1 − u)n−1πn ≤ π̂n ≤ (1 + u)n−1πn, (17)

which implies that the relative error |πn − π̂n|/πn is upper-bounded by γn−1, defined
for (n − 1) · u < 1.

Here we seek to build a sequence a1, a2, a3, . . . , trying to maximize the relative
error at each step. For this purpose, we will choose each an so that all the roundings
occur in the same direction, and this direction must be the upward one to have a
chance to get a relative error larger than (n − 1) · u at step n.

666 Numer Algor (2015) 70:653–667

Table 3 Relative errors achieved with the values ai generated by our method of Section 6

p n relative error

24 10 8.99401809 · · · u
24 100 98.92221853 · · · u
53 10 8.99999971848 · · · u
53 100 98.99999680546 · · · u
113 10 8.99999999999999972714 · · · u
113 100 98.99999999999999705984 · · · u

With the construction below, an will depend only on π̂n−1, and all the an’s will
be close to 1, so that this sequence will be ultimately periodical. Over one period,
the ratio π̂n/πn will be multiplied by some constant ρ, and since all roundings will
be performed upward, ρ > 1. Over m periods, the ratio π̂n/πn will be multiplied by
ρm, so that the relative error will grow exponentially, thus will become larger than
(n − 1) · u when n is large enough.

We assume p ≥ 6, so that it can be shown that the following construction behaves
as wanted. At step n ≥ 2, one can write:

an = 1 + kn · 2−p+1,

π̂n = 1 + gn · 2−p+1 = RN(π̂n−1 · an),

where kn will be an integer5 and gn will be a positive integer. We will deal with the
initial step after giving the general rule. We have

π̂n−1 · an = 1 + (gn−1 + kn) · 2−p+1 + gn−1kn · 2−2p+2.

We wish to maximize the relative error and have an upward rounding. If gn−1+kn

is less than 2p−1, the number 1 + (gn−1 + kn) · 2−p+1 is a FP number. To maximize
the relative error, we wish gn−1 + kn to be non-negative and as small as possible,
while gn−1kn · 2−2p+2 should be as close as possible to, but larger than (for upward
rounding), ±2−p, i.e. gn−1kn �> 2p−2; and we will get:

gn =
{

gn−1 + kn if kn < 0,
gn−1 + kn + 1 if kn > 0.

However under these constraints, if gn is very small, then one obtains large values
for gn+1, gn+2, etc., which is not interesting as we want each gi to remain small. For
this reason, we will try to keep kn and gn balanced. Hence a good choice is

• kn = 1 +
⌊
2p−2

gn−1

⌋
if gn−1 < 	2(p−1)/2
;

• kn = 1 −
⌈
2p−2

gn−1

⌉
otherwise.

5If kn is negative, it could be a half-integer, but such a choice would not yield an interesting sequence.

Numer Algor (2015) 70:653–667 667

Table 4 Relative errors for the smallest values of n such that the relative error is larger than (n − 1) · u

with the values ai generated by our method of Section 6

p n relative error

6 106 105.5728705 · · · u
7 124 123.0487381 · · · u
8 119 118.2293467 · · · u
9 156 155.0673067 · · · u
24 27921 27920.0002498 · · · u

For the initial step, as we want g2 to be as small as possible, we will choose for k1
(= g1) the smallest integer such that k2 < 0, i.e.

k1 = g1 = 	2(p−1)/2
.
Table 3 gives examples of the relative errors achieved with the values ai generated

by this method, for various values of p and n. Table 4 shows relative errors for the
smallest values of n such that the relative error is larger than (n − 1) · u with the
values ai generated by our method for various values of p.

7 Conclusion

We have shown that, under mild conditions (in particular, a reasonable bound on
n), the relative error of the computation of xn in floating-point arithmetic using the
“naive” algorithm is upper bounded by (n− 1) ·u. This bound is simpler and slightly
better than the previous bound. We conjecture that the same bound holds in the more
general case of the computation of the product of n floating-point numbers when n is
not too large. We have provided examples that show that the actual error can be very
close to, but smaller than, (n − 1) · u for small values of n, and becomes larger than
(n − 1) · u when n is large enough.

References

1. Graillat, S.: Accurate floating point product and exponentiation. IEEE Trans. Comput. 58(7), 994–1000
(2009)

2. Higham, N.J. Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia, PA
(2002)

3. IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic. IEEE Standard 754–2008,
August 2008. Available at http://ieeexplore.ieee.org/servlet/opac?punumber=4610933

4. Jeannerod, C.-P., Rump, S.M.: On relative errors of floating-point operations: optimal bounds and
applications. Research report hal-00934443, available at http://hal.inria.fr/hal-00934443

5. Jeannerod, C.-P., Rump, S.M.: Improved error bounds for inner products in floating-point arithmetic.
SIAM J. Matrix Anal. Appl. 34(2), 338–344 (2013)

6. Knuth, D.: The Art of Computer Programming, 3rd edition, volume 2, Seminumerical Algorithms.
Addison-Wesley, Reading, MA (1998)

7. Muller, J.-M., Brisebarre, N., De Dinechin, F., Jeannerod, C.-P., Lefèvre, V., Melquiond, G., Revol, N.,
Stehlé, D., Torres, S.: Handbook of Floating-Point Arithmetic. Birkhäuser Boston (2010)

8. Rump, S.M.: Error estimation of floating-point summation and dot product. BIT 52(1), 201–220 (2012)

http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://hal.inria.fr/hal-00934443

	On the maximum relative error when computing integer powers by iterated multiplications in floating-point arithmetic
	Abstract
	Introduction
	Floating-point arithmetic and rounding errors
	Relative error due to roundings
	The particular case of computing powers

	Preliminary results
	Proof of Theorem 2
	First case: if x2 1+n2u
	Second case: if x2 > 1+n2u
	Combining both cases

	Is the bound of Theorem 2 tight?
	A brief remark on underflow and overflow
	What about iterated products ?
	Conclusion
	References

