
Journal of Computational and Applied Mathematics 243 (2013) 28–47

Contents lists available at SciVerse ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Accurate evaluation of the k-th derivative of a polynomial and
its application✩

Hao Jiang a,b,c,∗, Stef Graillat c, Canbin Hu d, Shengguo Li a, Xiangke Liao e, Lizhi Cheng a,b,
Fang Su a

a School of Science, National University of Defense Technology, Changsha, 410073, China
b The State Key Laboratory for High Performance Computation, National University of Defense Technology, Changsha, 410073, China
c PEQUAN, LIP6, Université Pierre et Marie Curie, CNRS, Paris, France
d College of Electronic Science and Engineering, National University of Defense Technology, Changsha, 410073, China
e School of Computer, National University of Defense Technology, Changsha, 410073, China

a r t i c l e i n f o

Article history:
Received 7 July 2010
Received in revised form 5 November 2012

Keywords:
Derivative evaluation
Rounding error
Compensated algorithm
Floating-point arithmetic
Error-free transformation

a b s t r a c t

This paper presents a compensated algorithm for the evaluation of the k-th derivative of a
polynomial in power basis. The proposed algorithmmakes it possible the direct evaluation
without obtaining the k-th derivative expression of the polynomial itself, with a very
accurate result to all but the most ill-conditioned evaluation. Forward error analysis and
running error analysis are performed by an approach based on the data dependency graph.
Numerical experiments illustrate the accuracy and efficiency of the algorithm.

Crown Copyright© 2012 Published by Elsevier B.V. All rights reserved.

1. Introduction

The need to evaluate the derivatives of a polynomial at a specific point arises in many fields of engineering and
mathematics. Horner’s rule is the classic algorithm for evaluating polynomials. It can also efficiently evaluate various
order derivatives of a polynomial. We denote this Horner scheme with derivatives by HD algorithm (Horner derivative
algorithm). The HD algorithm carries out the process of synthetic division without determining the derivative expression
of the polynomial. This algorithm and its error analysis have been studied by Müller [1], Olver [2] and Burrus [3], and
summarized by Higham in [4]. However, when performed in floating-point arithmetic, the computed result by the HD
algorithm may be less accurate than expected due to cancellations. Therefore, some high accurate algorithms are required.
Recently, Graillat, Langlois and Louvet [5–7] proposed a compensated Horner algorithm to evaluate the polynomial in
power basis. The algorithm, using error-free transformations (EFTs) [8–10], yields a full precision accuracy for not too
ill-conditioned polynomial. Motivated by this previous research, we propose the compensated Horner derivative algorithm
to evaluate the k-th derivative of a polynomial.

The rest of the paper is organized as follows. In Section 2 we introduce some basic notations and results about
floating-point arithmetic and error-free transformations. In Section 3, we recall the HD algorithm and present its forward

✩ The researchwas supported byNational Natural Science Foundation of China (60921062, 61072118, 11101430), the Foundation for Innovative Research
Groups of the National Natural Science Foundation of China (Grant No. 60626003), Science Research Project of National University of Defense Technology
JC 12-02-01, JC 11-02-06 and China Scholarship Council 2011611057 and 2011611060.
∗ Corresponding author at: School of Science, National University of Defense Technology, Changsha, 410073, China. Tel.: +86 15802680698.

E-mail addresses: jhnudt@yahoo.cn (H. Jiang), stef.graillat@lip6.fr (S. Graillat), clzcheng@nudt.edu.cn (L.Z. Cheng).

0377-0427/$ – see front matter Crown Copyright© 2012 Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2012.11.008

http://dx.doi.org/10.1016/j.cam.2012.11.008
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:jhnudt@yahoo.cn
mailto:stef.graillat@lip6.fr
mailto:clzcheng@nudt.edu.cn
http://dx.doi.org/10.1016/j.cam.2012.11.008

H. Jiang et al. / Journal of Computational and Applied Mathematics 243 (2013) 28–47 29

error bound using a new approach which is different from that in [4]. In Section 4 the compensated Horner derivative
algorithm is derived with EFT. In Section 5 the forward error analysis is performed. Section 6 is devoted to the running error
analysis. In Section 7 numerical experiments illustrate the accuracy and efficiency of the proposed algorithm. Finally, we
conclude by giving an application of the proposed algorithm.

2. Preliminaries

In this paperwe assume all the floating-point computation is performed in double precision,with the round to the nearest
rounding mode and no underflow occurring. We also assume that the computation in floating-point arithmetic obeys the
model

a op b = fl(a ◦ b) = (a ◦ b)(1 + ε1) = (a ◦ b)/(1 + ε2), (1)
where op ∈ {⊕, ⊖, ⊗}, ◦ ∈ {+, −, ×} and |ε1|, |ε2| ≤ u. The symbol u is the round-off unit and ‘‘op’’ represents the
floating-point computation, e.g. a ⊕ b = fl(a + b). We also assume that all the operations are done with rounding to the
nearest and that the computed result of a ∈ R in floating-point arithmetic is denoted by â or fl(a) and F denotes the set
of all floating-point numbers (see [4] for more details). Following [4], we will use the following classic properties in error
analysis (we always assume that nu < 1).
(1) if δi ≤ u, ρi = ±1, then

n
i=1(1 + δi)

ρi = 1 + θn = ⟨n⟩,
(2) |θn| ≤ γn := nu/(1 − nu),
(3) (1 + θk)(1 + θj) ≤ (1 + θk+j) and ⟨k⟩⟨j⟩ = ⟨k + j⟩,
(4) γk + γj + γkγj ≤ γk+j and γk < γk+1.

To derive the running error bound, we need the next relations (see details in [5,7]).

γk = (ku) ⊘ (1 ⊖ ku), γk ≤ (1 + u)γk, (1 + u)n|x| ≤ fl


|x|
1 − (n + 1)u


. (2)

Next let us introduce some results concerning error-free transformations (EFTs). For a pair of floating-point numbers
a, b ∈ F, when no underflow occurs, there exists a floating-point number y satisfying a ◦ b = x + y, where x = fl(a ◦ b)
and ◦ ∈ {+, −, ×}. The transformation (a, b) −→ (x, y) is regarded as an error-free transformation. The error-free
transformation algorithms of the sum and product of two floating-point numbers used later in this paper are the TwoSum
algorithm by Knuth [11] and the TwoProd algorithm by Dekker [12], respectively (see Appendix B). The following theorem
exhibits the important properties of the TwoSum and TwoProd algorithms (see [10]).

Theorem 1 ([10]). For a, b ∈ F and x, y ∈ F, TwoSum and TwoProd verify

[x, y] = TwoSum(a, b), x = fl(a + b), x + y = a + b, y ≤ u|x|, y ≤ u|a + b|,
[x, y] = TwoProd(a, b), x = fl(a × b), x + y = a × b, y ≤ u|x|, y ≤ u|a × b|.

3. Horner derivative algorithm

The Horner derivative (HD) algorithm is the classic method for the evaluation of the k-derivative of a polynomial
p(x) =

n
i=0 aix

i. This algorithm permits the direct evaluation without obtaining the k-th derivative of the polynomial
itself at any point x (see more details in [4]). Using a data dependency graph between the computed values, we present a
new method to obtain the error bound of HD algorithm here.

First of all, we will introduce the data dependency graph as a convenient technique in the error analysis, which is similar
to those in the literature, such as [13,14]. Fig. 1 shows the data dependency graphs for HD algorithm in Section 3 and CompHD
algorithm in Section 5. There exist the following relations:

T (i, j) = T (i, j + 1) × TV_arr + T (i − 1, j + 1) × TD_arr, (3)
E(i, j) = E(i, j + 1) × EV_arr + E(i − 1, j + 1) × ED_arr + CS(i, j), (4)

where T (i, j) and E(i, j) are computed values, the vertical arrows TV_arr, EV_arr and the diagonal arrows TD_arr, ED_arr are
coefficients, and CS(i, j) is a constant.

For further error analysis, the condition number for the k-th derivative evaluation of a polynomial p(x) =
n

i=0 aix
i at

entry x is given

cond(p, x, k) =

k!
n

m=k
Ck
m|x|m−k

|am|k! n
m=k

Ck
mxm−kam

 =
p(k)(x)
|p(k)(x)|

, Ck
m =


k
m


. (5)

Next, we recall the classic HD algorithm and prove its accuracy with data dependency graph technique. The analogous
result is obtained by expressing Algorithm 1 in matrix form in [4], however, which only deal with the first derivative.

30 H. Jiang et al. / Journal of Computational and Applied Mathematics 243 (2013) 28–47

(a) Data dependency graph for yji andyji . (b) Data dependency graph for ϵyji and ϵyji .
Fig. 1. Data dependency graphs for HD and CompHD algorithms.

Algorithm 1. Horner derivative algorithm

function res = HD(p, x, k)
yji = 0, for i = 0 : 1 : k, and j = n + 1 : −1 : 0
yj+1
−1 = aj, for j = n : −1 : 0

for j = n : −1 : 0
for i = min(k, n − j) : −1 : max(0, k − j)
yji = x × yj+1

i + yj+1
i−1

end
end
res = k! × y0k

The data dependency graph for the HD algorithm in theoretical computation can be expressed with Fig. 1(a), where the
parallelograms represent the initial values, that is T (−1, j + 1) = yj+1

−1 = aj and the squares represent the iterative values,
that is T (i, j) = yji. The vertical arrow (TV_arr) and the diagonal arrow (TD_arr) represent x and 1, respectively. Then, (3)
embodies the following Eq. (6).

Before proving themain theorem, we display two recursive formulas as follows, which correspond to the theoretical and
numerical computation, respectively,

yji = x × yj+1
i + yj+1

i−1, (6)

yji = x ⊗yj+1
i ⊕yj+1

i−1. (7)

The following lemma gives the bound of the floating-point evaluationyji, which is used in the accuracy analysis of the HD
algorithm and the further proposed CompHD algorithm.

H. Jiang et al. / Journal of Computational and Applied Mathematics 243 (2013) 28–47 31

Lemma 1. Let p(x) =
n

i=0 aix
i be a polynomial of degree n with floating-point coefficients, and let x be a floating-point value.yji is the floating-point evaluation of yji in Algorithm 1, and it satisfies

|yji| ≤ (1 + γ2n−k)

n
m=i+j

C i
m−j|x|

m−(i+j)
|am|. (8)

Proof. From (7) and the standard model (1) we can deduce

yji = x ×yj+1
i ⟨2⟩ +yj+1

i−1⟨1⟩. (9)

Actually, when i + j = n,yji = yj+1
i−1, but for the error analysis of convenience, here we letyji = yj+1

i−1⟨1⟩ when i > 0
andyn0 = yn+1

−1 = an, which is consistent with the following ζn = 0 in Eq. (11). Then with the same initial valueyt
−1 = yt

−1 = at−1, k + 1 ≤ t ≤ n + 1, we can obtain

yji =

n
m=i+j

C i
m−jx

m−(i+j)am(1 + ξijm), (10)

with

1 + ξijm = 1 + θ2(m−(i+j))+i+ζm = ⟨2(m − (i + j)) + i + ζm⟩, ζm =


0, ifm = n,
1, else. (11)

Since n ≥ m ≥ i + j ≥ k ≥ i, we obtain max{|ξijm|} ≤ γ2n−k.
Therefore, from (10) we can easily obtain (8). �

In the case of the iterative relation (9), in contrast to (3), the vertical arrowTV_arr and the diagonal arrowTD_arr represent
x × ⟨2⟩ and ⟨1⟩, respectively, T (i, j) =yji and the initial values T (−1, t) =yt

−1 = at−1. Fig. 1(a) shows that each path from
the node (0,m) to the node (i, j) consists ofm− (i+ j) vertical arrows and i diagonal arrows, with the number of these paths
be C i

m−j. And there is only one path of the diagonal arrow from the node (0,m) to (−1,m+ 1). Consideringyn0 =yn+1
−1 = an

andym0 = x ×ym+1
0 ⟨2⟩ +ym+1

−1 ⟨1⟩ form ≥ j, we have the definition of ζm in (11).
When computingyji, we find that the node (i, j) is in the line x+ y = i+ j and the valueyji in the node (i, j) only depends

on the values in the nodes (0, i + j), . . . , (0, n). Then from Fig. 1(a) it is easy to obtain that n ≥ m ≥ i + j ≥ k ≥ i.
The above discussion about the data dependency graph of Algorithm 1 helps explaining how to obtain Eqs. (10), (11) and

finally (8).

Theorem 2. Let p(x) =
n

i=0 aix
i be a polynomial of degree n with floating-point coefficients, and x a floating-point value. The

relative forward error bound in Algorithm 1 verifies:

|HD(p, x, k) − p(k)(x)|
|p(k)(x)|

≤ γ2ncond(p, x, k). (12)

Proof. According to (10) and (11) in Lemma 1, let i = k and j = 0, then we have

y0k =

n
m=k

Ck
mx

m−kam(1 + θ2m−k+ζm). (13)

From Algorithm 1, we have

HD(p, x, k) =p(k)(x) = k! ⊗y0k = k!y0k(1 + θ1), |θ1| ≤ u. (14)

Here, we deem that the process k! does not generate rounding error.
Thus, from (13) and the property (3) in Section 2 we have

HD(p, x, k) = k!
n

m=k

Ck
mx

m−kam(1 + θ2m−k+ζm+1). (15)

Since k ≥ 1, we have |θ2m−k+ζm+1| ≤ |θ2n−k+ζn+1| ≤ γ2n−k+1 ≤ γ2n. Using the condition number (5), we finally write the
error bound (12). �

Theorem 2 tells us that when cond(p, x, k) > γ −1
2n , the computed result HD(p, x, k) does not contain any correct digit.

32 H. Jiang et al. / Journal of Computational and Applied Mathematics 243 (2013) 28–47

4. Compensated Horner derivative algorithm

In this section, the rounding errors generated by Algorithm 1 in each step are exhibited with EFT algorithm. We give the
expression of y0k −y0k , which consists of these rounding errors. On the basis of this expression we propose a compensated
Horner derivative (CompHD) algorithm.

Applying error-free transformation to formula (7), we obtain

[s, π j
i] = TwoProd(x,yj+1

i), (16)

[yji, σ j
i] = TwoSum(s,yj+1

i−1). (17)

Theorem 3. Let p(x) =
n

i=0 aix
i be a polynomial of degree nwith floating-point coefficients, and let y0k andy0k be the theoretical

result and the numerical result, respectively, by Algorithm 1. Then we have

y0k =y0k +

k
i=0

n−1−i
j=k−i

Ck−i
j xi+j−k(π

j
i + σ

j
i), Ck−i

j =


j

k − i


, (18)

where π
j
i and σ

j
i are rounding errors generated in the floating-point evaluation and obtained with EFT.

Proof. Since Eqs. (16) and (17) are EFT, from Theorem 1, we obtain

yji = x ×yj+1
i +yj+1

i−1 − π
j
i − σ

j
i (19)

Let

ϵyji = yji −yji, for i = 0 : k and j = k − i : n − i (20)

then from (6) and (19), we have

ϵyji = x × ϵyj+1
i + ϵyj+1

i−1 + π
j
i + σ

j
i . (21)

Since yj+1
−1 =yj+1

−1 = aj is a constant, we have ϵyj
−1 = 0, for j = n : −1 : 0. Also, it is obvious that if i+ j = n, yji =yji = an,

and so ϵyji = 0. Then we have the initial bound values.
According to the recurrence relation (21), it is easy to verify that at the end of loop we have

ϵy0k =

k
i=0

n−1−i
j=k−i

Ck−i
j xi+j−k(π

j
i + σ

j
i). (22)

Due to ϵy0k = y0k −y0k , we obtain (18). �

The recurrence relation (21) is shown in Fig. 1(b),where the roundness represents the iterative values, that is E(i, j) = ϵyji.
The constant value CS(i, j) in (4) is π

j
i +σ

j
i here. The vertical arrow (EV_arr) and the diagonal arrow (ED_arr) represent x and

1, respectively. We find that each of the paths from the node (i, j) to the node (k, 0) consists of i+ j− k vertical arrows and
k − i diagonal arrows, with the number of these paths be Ck−i

j . Considering (21) and the bound initial values, we find that
ϵy0k should consist of all the constants CS(i, j) for i = 0 : k and j = k − i : n − 1 − i. Thus, based on the data dependency
analysis above, we deduce that the coefficient of (π j

i + σ
j
i) contained in the final formulation of ϵy0k should be Ck−i

j xi+j−k.
From Theorem 3, we have

p(k)(x) = y0k × k! = (y0k + ϵy0k) × k!. (23)

Therefore, the key of the new algorithm proposed in this section is to compute an approximate ϵy0k of ϵy0k in the working
precision, with a corrected result

p̄(k)(x) = (y0k ⊕ ϵy0k) ⊗ k!. (24)

The corrected result p̄(k)(x) is expected to be more accurate than the floating-point result (14) by the traditional HD
algorithm.

The previous discussion leads to the following compensated Horner derivative algorithm (CompHD algorithm)

H. Jiang et al. / Journal of Computational and Applied Mathematics 243 (2013) 28–47 33

Algorithm 2. Compensated Horner derivative algorithm

function res = CompHD(p, x, k)
yji = 0, ϵyji = 0, for i = 0 : 1 : k, and j = n + 1 : −1 : 0
yj+1
−1 = aj, ϵyj+1

−1 = 0, for j = n : −1 : 0
for j = n : −1 : 0

for i = min(k, n − j) : −1 : max(0, k − j)
[s, π j

i] = TwoProd(x,yj+1
i)

[yji, σ j
i] = TwoSum(s,yj+1

i−1)ϵyji = x ⊗ ϵyj+1
i ⊕ ϵyj+1

i−1 ⊕ (π
j
i ⊕ σ

j
i)

end
end
res = (y0k ⊕ ϵy0k) ⊗ k!

Algorithm2 consists of two parts: the computations ofy0k and ϵy0k , the iterative relations ofwhich are exhibited in Fig. 1(a)
and (b), respectively. It must be noticed that the iterative valueyji obtained by Algorithm 1 is as the same as that obtained
by Algorithm 2.

5. Accuracy of the compensated Horner derivative algorithm

In this section we prove that the result of the compensated Horner derivative algorithm is nearly as accurate as the one
computed by the original Horner derivative algorithm with twice working precision and then roughly rounded to working
precision.

Lemma 2. Let p(x) =
n

i=0 aix
i be a polynomial of degree n with floating-point coefficients. Algorithm 2 computes the floating-

point evaluation of ϵy0k defined in Theorem 3. Then the computed result ϵy0k satisfies the following forward error bound.

|ϵy0k − ϵy0k | ≤ γ3n−k−1

k
i=0

n−1−i
j=k−i

Ck−i
j |x|i+j−k(|π

j
i | + |σ

j
i |). (25)

Proof. By Algorithm 2, we haveϵyji = x ⊗ ϵyj+1
i ⊕ ϵyj+1

i−1 ⊕ (π
j
i ⊕ σ

j
i)

= x × ϵyj+1
i (1 + θ3) + ϵyj+1

i−1(1 + θ2) + (π
j
i + σ

j
i)(1 + θ2)

= x × ϵyj+1
i ⟨3⟩ + ϵyj+1

i−1⟨2⟩ + (π
j
i + σ

j
i)⟨2⟩. (26)

Actually, when i+ j = n−1, ϵyn−1−j
i = ϵyn−j

i−1⟨2⟩+(π
n−1−j
i +σ

n−1−j
i)⟨1⟩, andwhen i = 0, ϵyt0 = x×ϵyt+1

0 ⟨2⟩+(π t
0+σ t

0)⟨1⟩.
However, for the sake of convenience of error analysis, it is feasible and reasonable that we assume thatϵyn−1−j

i = ϵyn−j
i−1⟨2⟩ + (π

n−1−j
i + σ

n−1−j
i)⟨2⟩,ϵyt0 = x × ϵyt+1

0 ⟨3⟩ + (π t
0 + σ t

0)⟨2⟩,

at the bound computation of Algorithm 2. Then at the end of loop we will have

ϵy0k =

k
i=0

n−1−i
j=k−i

Ck−i
j xi+j−k(π

j
i + σ

j
i)(1 + ξij), (27)

where (1 + ξij) = ⟨3(i + j − k) + 2(k − i) + 2⟩. Since n − 1 ≥ i + j ≥ k ≥ i ≥ 0, it is obvious that max{|ξij|} ≤ γ3n−k−1.
Thus, from (22) and (27), we obtain (25). �

Concerning the iterative relation (26), we can explain (27) with the data dependency graph in Fig. 1(b). Here, EV_arr and
ED_arr represent the multiplication by x × ⟨3⟩ and that by ⟨2⟩, respectively, with E(i, j) = ϵyji and CS(i, j) = (π

j
i + σ

j
i)⟨2⟩.

The scheme is analogous to the previous one about ϵyji.

Lemma 3. Let p(x) =
n

i=0 aix
i be a polynomial of degree n with floating-point coefficients, and let x be a floating-point value.

Then if no underflow occurs, Algorithm 2 satisfies

|π
j
i | + |σ

j
i | ≤ 2u(1 + γ2n−k+1)

n
m=i+j

C i
m−j|x|

m−(i+j)
|am|. (28)

34 H. Jiang et al. / Journal of Computational and Applied Mathematics 243 (2013) 28–47

Proof. Since [s, π j
i] = TwoProd(x,yj+1

i) and [yji, σ j
i] = TwoSum(s,yj+1

i−1) in Algorithm 2, according to Theorem 1, we obtain

|π
j
i | ≤ u|s| (29)

|σ
j
i | ≤ u|s +yj+1

i−1| ≤ u(|s| + |yj+1
i−1|). (30)

Taking into account that s = x ⊗yj+1
i = (1 + δ)(x ×yj+1

i), we have |s| ≤ (1 + u)(|x| × |yj+1
i |).

Hence, by (29) and (30), we derive

|π
j
i | + |σ

j
i | ≤ 2u((1 + u)(|x| × |yj+1

i |) + |yj+1
i−1|). (31)

Considering that the values ofyji obtained by Algorithm 1 and by Algorithm 2 are the same, from Lemma 1, we have

|x| × |yj+1
i | ≤ (1 + γ2n−k)

n
m=i+j+1

C i
m−j−1|x|

m−(i+j)
|am|, (32)

|yj+1
i−1| ≤ (1 + γ2n−k)

n
m=i+j

C i−1
m−j−1|x|

m−(i+j)
|am|. (33)

Using the classic property (4) in error analysis in Section 2, we have (1 + u)(1 + γ2n−k) ≤ (1 + γ2n−k+1) and
γ2n−k ≤ γ2n−k+1.

Meanwhile according to C i−1
m−j−1 + C i

m−j−1 = C i
m−j and C i−1

i−1 = C i
i = 1, we can obtain the expected bound (28) from

(31)–(33). �

Lemma 4. Let p(x) =
n

i=0 aix
i be a polynomial of degree n with floating-point coefficients. The forward error bound between

the theoretical result ϵy0k and the computed result ϵy0k in Lemma 2 can be refined as follows:

|ϵy0k − ϵy0k | ≤ (k + 1)γ3n−k−1γ2n

n
m=k

Ck
m|x|m−k

|am|. (34)

Proof. From Lemma 3, we obtain

Ck−i
j |x|i+j−k(|π

j
i | + |σ

j
i |) ≤ 2u(1 + γ2n−k+1)

n
m=i+j

Ck−i
j C i

m−j|x|
m−k

|am|. (35)

Taking into account that Ck−i
j C i

m−j ≤ Ck
m, we have

n−1−i
j=k−i

Ck−i
j |x|i+j−k(|π

j
i | + |σ

j
i |) ≤ 2u(1 + γ2n−k+1)(n − k)

n
m=k

Ck
m|x|m−k

|am|.

Since k ≥ 1, we obtain

2u(n − k)(1 + γ2n−k+1) ≤ 2un(1 + γ2n) = γ2n,

then

n−1−i
j=k−i

Ck−i
j |x|i+j−k(|π

j
i | + |σ

j
i |) ≤ γ2n

n
m=k

Ck
m|x|m−k

|am|. (36)

The right-hand side of this inequality is independent of i. Thus, from (25) in Lemma 2 and (36), we obtain (34). �

Now we can give the accuracy of the CompHD algorithm for the evaluation the k-derivative of a polynomial in power
basis.

Theorem 4. Let p(x) =
n

i=0 aix
i be a polynomial of degree n with floating-point coefficients, and x a floating-point value. The

relative forward error bound in Algorithm 2 is such that

|CompHD(p, x, k) − p(k)(x)|
|p(k)(x)|

≤ 2u + (k + 1)γ2nγ3ncond(p, x, k). (37)

H. Jiang et al. / Journal of Computational and Applied Mathematics 243 (2013) 28–47 35

Proof. First, we deem that the procedure of computing k! generates no rounding error.
From (24), we obtain

p̄(k)(x) = (y0k + ϵy0k)(1 + ε1) × k! × (1 + ε2) (38)

= k!(y0k + ϵy0k − ϵy0k + ϵy0k)(1 + θ2), (39)

where |ε1|, |ε2| ≤ u and (1 + θ2) = (1 + ε1)(1 + ε2) with |θ2| ≤ γ2. Then by (23), we deduce

p̄(k)(x) = p(x)(1 + θ2) + k!(ϵy0k − ϵy0k)(1 + θ2). (40)

Thus the forward error bound in Algorithm 2 is

|p(k)(x) − p̄(k)(x)| ≤ γ2|p(k)(x)| + (1 + γ2)k!|ϵy0k − ϵy0k |. (41)

Then from Lemma 4, we have

(1 + γ2)k!|ϵy0k − ϵy0k | ≤ (k + 1)(1 + γ2)γ3n−k−1γ2nk!
n

m=k

Ck
m|x|m−k

|am|. (42)

Since (1 + γ2)γ3n−k−1 ≤ γ3n−k+1 ≤ γ3n and k!
n

m=k C
k
m|x|m−k

|am| = p̃(k)(x), we have

(1 + γ2)k!|ϵy0k − ϵy0k | ≤ (k + 1)γ2nγ3np(k)(x). (43)

From (41) and (43), we obtain

|p(k)(x) − p̄(k)(x)| ≤ γ2|p(k)(x)| + (k + 1)γ2nγ3np(k)(x). (44)

Using the condition number (5), and considering that γ2 ≃ 2u which are almost the same to each other in working
precision, we obtain the expected relative error bound (37) roughly. �

From Theorem 4, we can observe that, if (k + 1)γ2nγ3ncond(p, x, k) < 2u, the relative error of the result computed by
Algorithm 2 is bounded by the constant value 2u.

Compared with Theorem 2, the computed value by the CompHD algorithm is nearly as accurate as the result computed
by the HD algorithm with twice working precision and then roughly rounded to working precision.

6. Running error bound for compensated Horner derivative algorithm

In the practical computation, we usually wish to compute a corresponding error bound along with the result. The a priori
error bound (44) in Theorem 4 is entirely adequate for theoretical purposes, but lacks sharpness. This section is devoted to
perform running error analysis of the compensated Horner derivative algorithm, which provides a sharper and a posteriori
error bound.

Lemma 5. Let p(x) =
n

i=0 aix
i be a polynomial of degree nwith floating-point coefficients.We use the notations of Algorithm 2.

Then the error bound between the theoretical result ϵy0k and the computed result ϵy0k is given by

|ϵy0k − ϵy0k | ≤ fl
 γ3n−k−1 ⊗ w0

k

1 − (3n + 1)u


:=α (45)

where w0
k is the computed result of

k
i=0

n−1−i
j=k−i

Ck−i
j |x|i+j−k(|π

j
i | + |σ

j
i |) (46)

in Lemma 2 and it is derived from

wj
i = |x| ⊗ wj+1

i ⊕ wj+1
i−1 ⊕ (|π

j
i | ⊕ |σ

j
i |) (47)

with the initial values wj
i = 0 for i = −1 : k, j = 0 : n.

Proof. From Lemma 2 we have

|ϵy0k − ϵy0k | ≤ γ3n−k−1w
0
k , (48)

where w0
k is the theoretical result of (46) with the iterative relation

w
j
i = |x| × w

j+1
i + w

j+1
i−1 + (|π

j
i | + |σ

j
i |) (49)

and the initial values w
j
i = 0 for i = 0 : k, j = 0 : n.

36 H. Jiang et al. / Journal of Computational and Applied Mathematics 243 (2013) 28–47

By (47) and the floating-point arithmetic model (1), we can deduce

wj
i =


(|x| × wj+1

i)
1

1 + ε1
+ wj+1

i−1


1

1 + ε2
+ (|π

j
i | + |σ

j
i |)

1
1 + ε3


1

1 + ε4
,

with |εt | ≤ u, for t = 1, 2, 3, 4.
Then taking into account that wj

i ≥ 0, we have

(1 + u)3wj
i ≥ |x| × wj+1

i + wj+1
i−1 + (|π

j
i | + |σ

j
i |). (50)

Considering wn−1
0 = |πn−1

0 | + |σ n−1
0 | and wn−1

0 = |πn−1
0 | ⊕ |σ n−1

0 |, we obtain

wn−1
0 ≤ (1 + u)wn−1

0 . (51)

From (50) and (51), we can prove by induction that, for j = n − 1 : −1 : 0,

w
j
i ≤ (1 + u)3(n−1−j)+1wj

i, (52)

which in turn is, for j = 0,

w0
k ≤ (1 + u)3(n−1)+1w0

k . (53)

By (48) and (53), we deduce

|ϵy0k − ϵy0k | ≤ (1 + u)3(n−1)+1γ3n−k−1w0
k . (54)

From the second relation in (2) and the model (1) it follows that

|ϵy0k − ϵy0k | ≤ (1 + u)3(n−1)+1
[(1 + u)γ3n−k−1 ⊗ w0

k](1 + u),

≤ (1 + u)3n(γ3n−k−1 ⊗ w0
k).

Using the third relation in (2), we obtain the expected error bound (45). �

We can explain the relationship between (46) and (49) with Fig. 1(b). Here, EV_arr and ED_arr represent |x| and 1,
respectively, with E(i, j) = w

j
i and CS(i, j) = |π

j
i | + |σ

j
i |.

Now let us consider the forward error bound in Algorithm 2. By (23) and (24) we can write

|p(k)(x) − p̄(k)(x)| ≤ |(y0k + ϵy0k) × k! − (y0k ⊕ ϵy0k) ⊗ k!|

≤ |(y0k + ϵy0k) × k! − (y0k ⊕ ϵy0k) ⊗ k!| + |ϵy0k − ϵy0k | × k!. (55)

The first term of (55) is the absolute error which comes from the evaluation of res = (y0k ⊕ ϵy0k) ⊗ k! in Algorithm 2. We
can apply algorithm TwoSum and TwoProd to obtain this actual error exactly. Meanwhile Lemma 5 gives the bound of the
second term. Hence, we can obtain a running error bound of Algorithm 2.

Theorem 5. A running error bound of CompHD algorithm (Algorithm 2) is given by

|CompHD(p, x, k) − p(k)(x)| ≤ fl
α ⊗ k! ⊕β

1 − 4u


, (56)

whereα is the error bound defined by (48) in Lemma 5 andβ is obtained from the following equalityβ = |c ⊗ k! ⊕ e| (57)

with [s, c] = TwoSum(y0k, ϵy0k) and [p̄(k)(x), e] = TwoProd(s, k!).

Proof. From Theorem 1, we havey0k + ϵy0k = s + c,

s × k! = p̄(k)(x) + e.

Then from (24) it follows that

(y0k + ϵy0k) × k! − (y0k ⊕ ϵy0k) ⊗ k! = (c × k! + e). (58)

From (55), (58) and (45), we can obtain

|p(k)(x) − p̄(k)(x)| ≤ |c × k! + e| + |ϵy0k − ϵy0k | × k! ≤ (1 + u)3(α ⊗ k! ⊕β).

Finally from the third relation in (2) and p̄(k)(x) = CompHD(p, x, k), we obtain the expected error bound (56). �

H. Jiang et al. / Journal of Computational and Applied Mathematics 243 (2013) 28–47 37

Fig. 2. Evaluation the 3rd derivative of the polynomial p(x) = (x− 0.75)5(x− 1)11 in the neighborhood of its multiple roots, using HD (left) and CompHD
(right).

From Theorem 5we deduce the following algorithm for the computation of the compensated result p̄(k)(x) together with
the bound µ of the running error.

Algorithm 3. Compensated Horner derivative algorithm with running error bound

function [res, µ] = CompHDWErr(p, x, k)
yji = 0, ϵyji = 0,wj

i = 0, for i = 0 : 1 : k, j = n + 1 : −1 : 0
yj+1
−1 = aj, ϵyj+1

−1 = 0,wj+1
−1 = 0, for j = n : −1 : 0

for j = n : −1 : 0
for i = min(k, n − j) : −1 : max(0, k − j)

[s, π j
i] = TwoProd(x,yj+1

i)

[yji, σ j
i] = TwoSum(s,yj+1

i−1)ϵyji = x ⊗ ϵyj+1
i ⊕ ϵyj+1

i−1 ⊕ (π
j
i ⊕ σ

j
i)wj

i = |x| ⊗ wj+1
i ⊕ wj+1

i−1 ⊕ (|π
j
i | ⊕ |σ

j
i |)

end
end
[s, c] = FastTwoSum(y0k, ϵy0k)
[res, e] = TwoProd(s, k!).α = (γ3n−k−1 ⊗ w0

k) ⊘ (1 ⊖ (3n + 1)u)β = |c ⊗ k! ⊕ e|
µ = (α ⊗ k! ⊕β) ⊘ (1 ⊖ 4u)

Algorithm 3 includes an estimation of the error bound at the same time as the evaluation without increasing significantly
its computational cost.

7. Numerical experiments

All our experiments are performed in IEEE-754 double precision as working precision corresponding to about 16 decimal
digits. Here, we consider the polynomials with floating-point coefficients and floating-point entry x. In this section we
present accuracy and timing results. All the programs about accuracy measurements have been written in Matlab 7.0, and
the ones about timing measurements are written in C code.

7.1. Accuracy of the compensated Horner derivative algorithm

In the first experiment, we evaluate the 3rd derivative of the polynomial p(x) = (x − 0.75)5(x − 1)11, written in its
expanded form, in the neighborhood of its multiple roots 0.75 and 1 (the tested polynomial is from [5]). Fig. 2 presents the

38 H. Jiang et al. / Journal of Computational and Applied Mathematics 243 (2013) 28–47

Fig. 3. Accuracy of the 3rd derivative evaluation of p(x) = (x − 1)n for n = 5, . . . , 45 in expanded form at the entry x = fl(1.333) with respect to the
condition number.

evaluation for 400 equally spaced points in the intervals [0.74995, 0.75005] and [0.9935, 1.0065]. It is clear that the CompHD
algorithm (Algorithm 2) gives much more smooth drawing than the original HD algorithm (Algorithm 1). The results show
that the compensated algorithm is an effective method of accurate evaluation to recover the expected curve.

In the second experiment, we focus on the forward error bound of our compensated Horner derivative algorithm. As
problem we consider the 3rd derivative evaluation of p(x) = (x − 1)n for n = 5, . . . , 45 in expanded form at the entry
x = fl(1.333). The results of the tests performed with the CompHD and HD algorithm are reported in Fig. 3. As expected,
when the condition number is smaller than 1/u, the relative error of the result by CompHD algorithm (Algorithm 2) is equal
to or smaller than 2u. This relative error increases nearly linearly for the condition number between 1/u and 1/u2.

It is interesting to compare the compensatedHorner derivative algorithmwith other approaches to obtain high-precision.
A standard way is by using multiple precision libraries, but if we just want to double the IEEE-754 double precision, the
most efficient way is by using the double–double arithmetic [15,16]. Thus we compare CompHD algorithm with the Horner
derivative algorithm written in double–double arithmetic (DDHD algorithm, see Algorithm 13), here the result of DDHD
should be rounded to the working precision (double precision). As we see in Fig. 3, CompHD algorithm has nearly the same
accuracy as DDHD algorithm.

In the next experiment, we illustrate the advantage of the running error bound (56) over the a priori one (44) in the
accuracy of the error bound. We evaluate the 3rd derivative of p(x) = (x − 1)8 in expanded form for 400 equally spaced
points in the interval [0.9935, 1.0065]. The results are reported in Fig. 4. The running error bound is more significant than
the a priori one especially near x = 1.

7.2. Computational complexity and running time performances

In this subsection, wewill pay attention to the computational complexity of all the algorithms HD, CompHD, CompHDwErr
and DDHD, and then show the practical efficiency of our algorithm in terms of running time. Algorithms 1–3 and 13 are
convenient to the error analysis, however they should bemodified in the practical program. Hence in this subsection, it must
be emphasized that the HD, CompHD, CompHDwErr and DDHD algorithms represent the corresponding modified algorithms
written in C code after modification, such as taking the procedure Split(x) out of inner loop (referring to the technique
in [17]). Similarly, we also take the procedure abs(x) out of recurrence in Algorithm 3.

We assume that one counts the process of abs(x), min(x, y) or max(x, y) as well as every addition or multiplication as
one flop. And we let yji = an, for i + j = n, as the initial values. Just as shown in Appendix, TwoSum, TwoProd, Split
and FastTwoSum algorithms require 6, 17, 4 and 3 flops respectively. Then it is easy to obtain the computational cost of
Algorithms 1–3 and 13:

• HD: 2(n − k)(k + 1) + k − 1 + 4n flops,
• CompHD: 23(n − k)(k + 1) + k + 4 + 4n flops,
• CompHDwErr: 29(n − k)(k + 1) + k + 43 + 4n flops,
• DDHD: 38(n − k)(k + 1) + k + 2 + 4n flops.

We measured the flop count ratios among HD, CompHD, CompHDwErr and DDHD and display the average ratios for
n = 50 : 5 : 1000 and k = 1 : 1 : 8 in Table 1. We can observe that CompHD is as accurate as DDHD but only requires

H. Jiang et al. / Journal of Computational and Applied Mathematics 243 (2013) 28–47 39

Fig. 4. Significance of the running error bound.

Table 1
Average ratios of the floating-point operations.

CompHD
HD

CompHDwErr
HD

DDHD
HD

CompHD
CompHDwErr

CompHD
DDHD

8.35 10.46 13.60 79.87% 61.47%

on the average only about 61% of flop count of that one. We also see that the over-cost due to the running error analysis for
CompHDwErr is quite reasonable.

We also compared HD, CompHD, CompHDwErr and DDHD in terms of measured computing time. The experiments are
performed on a laptop with a Intel(R) Core(TM) i5-2520M processor, with two cores each at 2.50 GHz. We used gcc version
4.4.5 with the compiler option ‘‘−o3’’ on Linux Ubuntu 11.04 andMicrosoft Visual studio C++ 9.0 with the default compiler
option ‘‘/od’’ onWindows 7 as two testing environments. Here, ‘‘/od’’ suppresses codemovement, it simplifies the debugging
process. Just like the statement in [5], we also deem that the computing time of these algorithms does not depend on the
coefficients of the polynomials, nor the argument x, but on the degree n and the derivative order k. Thus, we generate the
tested polynomials with random coefficients and arguments in the interval [−1, 1], whose degree vary from 50 to 1000 by
the step of 5 and derivative order vary from 1 to 8 by the step of 1 (In accordance with the case in flop count comparison in
Table 1.)

The average time ratio are reported in Table 2. In contrast with the data in Table 1, we see that the measured computing
time ratio of CompHD/DDHD is obviously better than the theoretical flop count one. Thanks to the analysis in terms of
instruction level parallelism (ILP) (see details in [17,18]), this phenomenon is surprising, but reasonable. Briefly speaking,
avoiding the renormalization step needed for double–double computations, the CompHD algorithm presents more ILP than
its counterpart DDHD algorithm. Also note that CompHD, CompHDwErr and DDHD havemuchmore instructions than HD, then
they will introduce somemore instruction-level parallelism. This partly explains the phenomenon that the first three ratios
of running time are smaller than those of theoretical flop count. Considering that CompHDwErr has some procedures for
computing the running error bound than CompHDwErr, which limits exploiting ILP. Then it is reasonable that the measured
running time ratio between CompHD and CompHDwErr is smaller than the theoretical flop count one. Due to page limitation,
the data-flow graphs for these algorithms to evaluate their ILP are not presented here, which are similar to the ones in [18].
In order to let readers appreciate the running time properties of the proposed algorithms in their own environments, the
proposed C and Matlab codes in this paper could be downloaded on the website.1

We also consider how n and k modify the flop count ratios and the measured computing time ratios. We found that,
for n ≫ k and for both floating point operation ratios and measured computing time ratios, the first three kinds of ratios
CompHD/HD, CompHDwErr/HD and DDHD/HD increase with the increasing of k for some constant n. In the contrary, n has no
significant impact on the ratios for some constant k. Hence, using the average ratios can partly well exhibit their properties,
such as the phenomenon discussion above.

1 https://sites.google.com/site/haojiangaccuratecomputing/clients/resources.

https://sites.google.com/site/haojiangaccuratecomputing/clients/resources

40 H. Jiang et al. / Journal of Computational and Applied Mathematics 243 (2013) 28–47

Table 2
Measured running time ratios.

CompHD
HD

CompHDwErr
HD

DDHD
HD

CompHD
CompHDwErr (%) CompHD

DDHD (%)

Linux gcc 4.4.5 3.85 6.44 8.14 61.76 47.42
WindowsVc++9.0 4.58 7.54 9.79 61.98 47.06

8. Simple application

In this section, we present an application to show the effectiveness of the proposed compensated Horner derivative
algorithm. We consider the Newton’s method in floating-point arithmetic [19] for solving the equation of the univariate
polynomial p(x) with a simple root. In that case, we improved the accurate Newton’s method proposed in [20], by using
CompHD algorithm to accurately compute the derivative. The classic Newton’s method and the accurate Newton’s method
are presented as follows:

Algorithm 4. The classic Newton’s method
x0 = ξ

xi+1 = xi −
Horner(p,xi)
HD(p,xi,1)

Algorithm 5 ([20]). The accurate Newton’s method
x0 = ξ

xi+1 = xi −
CompHorner(xi)

HD(p,xi,1)

For a polynomial p(x) with a simple zero x, x is not a zero of p′, however, sometimes the evaluation of p′ near x can be
still ill-conditioned. Hence, in this case it is necessary to accurately evaluate p′(xi), then we choose the CompHD algorithm
to modify Algorithm 5 and obtain the following algorithm.

Algorithm 6. The new accurate Newton’s method
x0 = ξ

xi+1 = xi −
CompHorner(p,xi)
CompHD(p,xi,1)

The following error analysis and numerical example proves and illustrates, respectively, that the convergence of iteration
strongly depends on the accuracy of the derivative’s evaluation when the problem of finding simple root is too ill-
conditioned, and that the accuracy of the final iteration result depends on the accuracywithwhich the residual is computed.

8.1. Forward error

In floating-point arithmetic, Newton’s method for general function f can be expressed as follows:

vi+1 =vi ⊖f (vi) ⊘f ′(vi) =vi −
f (vi)f ′(vi)

+ Ei (59)

where

Ei =

f (vi)f ′(vi)
δi + εi (60)

with |εi| < u|vi+1| and |δi| < u.
For notational convenience, we write v̄ =vi+1, v =vi and E = Ei. We obtain

v̄ = v −

f (v)f ′(v)
+ E. (61)

The condition number of finding simple root of a univariate polynomial used in this paper is given as follows (see [20])

condroot(p, x) =
p(|x|)

|x| |p′(x)|
. (62)

Theorem 6. Assume that the simple root is α such that f (α) = 0, f ′(α) ≠ 0 with f is continuously differentiable in a
neighborhood of the root, and in floating point arithmetic the computation of the derivative satisfies

Assumption 1 :

f ′(v) − f ′(v)

f ′(v)

 < ω <
1
2
, (63)

H. Jiang et al. / Journal of Computational and Applied Mathematics 243 (2013) 28–47 41

whereω is an upper bound given when v is closed to α, which shows the relative error bound of f ′(v). Assume also that for any v,
obtained from the iteration from the initial value v0 sufficiently close to the root α, satisfies

Assumption 2 : 0 <
f (v)

f ′(v)(v − α)
< µ1. (64)

Here, µ1 is an upper bound which partly shows the ratio bound between the secant and the tangent. In the iterative process,
f ′(v) ≠ 0 andf ′(v) ≠ 0, meanwhile ω and µ1 satisfy

Assumption 3 : µ1 + 2ω ≤ 2. (65)

Newton’s method (Algorithm 4) or its improved versions (Algorithms 5 and 6) in floating point arithmetic generates a sequence
{vi} converging to v∗. Then assume that, when the iteration converges, there is

Assumption 4 : 0 < µ2 <
f (v∗)

f ′(v∗)(v∗ − α)
. (66)

µ2 means a lower bound of equation in (64) for the final iterated result v∗. The parameters ω, µ1 and µ2 used in
Assumptions 1–4 will help to obtain the accuracies guaranteed by the algorithms as follows.

In case of Algorithm 4:α − v∗

v∗

 < Cγ2ncondroot(p, v∗). (67)

In case of Algorithms 5 and 6:α − v∗

v∗

 < Ku + Dγ 2
2ncondroot(p, v∗) (68)

where C, K and D are the constants that consist of ω and µ2.

Proof. First, expand f in a Taylor series around the simple root α,

0 = f (α) = f (v) + (α − v)f ′(r) (69)

where r is between v and α. From (61) and (69), we deduce

(α − v̄) = (α − v)


1 −

f ′(r)f ′(v)


+

f (v) − f (v)f ′(v)
− E. (70)

For convenience, let

G = 1 −
f ′(r)f ′(v)

and g =

f (v) − f (v)f ′(v)
− E. (71)

Second, we will prove that |G| < 1. From Assumption 1 (63), we can obtain f ′(v)f ′(v)

 <
1

1 − ω
and

f ′(v)

f ′(v)

 < 1 + ω. (72)

And from (69), the first part of (72), Assumption 2 (64) and Assumption 3 (65) we have f ′(r)f ′(v)

 =

 f (v)f ′(v)(v − a)

 <
1

1 − ω

 f (v)

f ′(v)(v − a)

 <
µ1

1 − ω
< 2. (73)

Meanwhile, from Assumption 1 (63), it is easy to obtain that f ′(v) andf ′(v) have the same sign. Hence, by (73) and the first
inequality in Assumption 2 (64), we have

0 <
f (v)f ′(v)(v − a)

< 2. (74)

Therefore, it follows that

|G| =

1 −
f ′(r)f ′(v)

 =

1 −
f (v)f ′(v)(v − a)

 < 1. (75)

As a consequence, the iterative process converges with v → v∗.

42 H. Jiang et al. / Journal of Computational and Applied Mathematics 243 (2013) 28–47

Next, from (70) and the denotations in (71), it follows that

|α − v∗| <
|g∗|

|1 − G∗|
. (76)

Using the second inequality of (72) and Assumption 4 (66), we can deduce

1
|1 − G∗|

=

f ′(v∗)

f ′(r∗)

 =

f ′(v∗)

f ′(v∗)

 ·
 f ′(v∗)

f ′(r∗)

 < (1 + ω)

 f ′(v∗)(v∗ − α)

f (v∗)

 <
1 + ω

µ2
(77)

where r∗ is between v∗ and α. From the definitions of g in (71) and E in (60), with the first inequality in (72), we have

|g∗| <

f (v∗) − f (v∗)f ′(v∗)

+ |E∗| <
1

1 − ω

f (v∗) − f (v∗)

f ′(v∗)

+ |E∗|, (78)

where

|E∗| < u

f (v∗)f ′(v∗)

+ u|v∗| <
u

1 − ω

 f (v∗)

f ′(v∗)

+
f (v∗) − f (v∗)

f ′(v∗)




+ u|v∗|. (79)

Here, by Assumption 2 (64) we have f (v∗)

f ′(v∗)

 < µ1|(α − v∗)|. (80)

Finally, wewill show the forward error bounds of Algorithms 4–6. Here the general function f is reduce to the polynomial
function p.

In case of Algorithm 4, the error bound of the polynomial evaluation is

|p(x) − p(x)| = |Horner(p, x) − p(x)| < γ2np(|x|). (81)

Then from (76)–(81), using the definition of condition number (62) we have
1 −

(1 + ω)µ1

(1 − ω)µ2
u
 α − v∗

v∗

 <
1 + ω

(1 − ω)µ2
(1 + u)γ2ncondroot(p, v∗) + u

1 + ω

µ2
.

Considering that condroot > 1 and u < γ2n, we simplify the inequality and approximately obtainα − v∗

v∗

 <
(1 + ω)(2 − ω)

(1 − ω)µ2
γ2ncondroot(p, v∗). (82)

In case of Algorithms 5 and 6, CompHorner is used for the evaluation of the polynomial, with the error bound

|p(x) − p(x)| = |CompHorner(p, x) − p(x)| < u|p(x)| + γ 2
2np(|x|). (83)

Similar to the discussion above, it follows that
1 −

(1 + ω)µ1

(1 − ω)µ2
u(2 + u)

 α − v∗

v∗

 <
1 + ω

(1 − ω)µ2
(1 + u)γ 2

2ncondroot(p, v∗) + u
1 + ω

µ2
,

and its approximate simplificationα − v∗

v∗

 <
1 + ω

µ2
u +

1 + ω

(1 − ω)µ2
γ 2
2ncondroot(p, v∗). � (84)

Assumption 1 (63) is necessary and reasonable.When the relative error is larger than 1/2, the computed result maintains
nearly no more than one bit precision, which means there is nearly no useful information left. Assumption 2 (64) and
Assumption 3 (65) will guarantee the convergence of the iteration. These assumptions are not strong that even when the
derivative evaluation is too ill-conditioned they can still hold. From the expression G in (75), we deem that the convergence
depends on the accuracy of the function’s derivative but not that of the function itself. When the evaluation of the derivative
is too ill-conditioned, such that ucond(p, x, 1) > 1, Algorithm 6 still converges but Algorithm 5 does not.

In the proof of Theorem 6, we expand f in a Taylor series around simple root α and truncate the expansion at the
first order, and then consider the convergence based on the hypothesis that the iteration converges linearly. Actually, the
convergence factor of Newton method in floating point arithmetic is between 1 and 2. Here, assume that f ∈ C2, we have

0 = f (α) = f (v) + (α − v)f ′(v) +
1
2
(α − v)2f ′′(c), (85)

H. Jiang et al. / Journal of Computational and Applied Mathematics 243 (2013) 28–47 43

where c is between α and v. Then we obtain

(α − v) = (α − v)


1 −

f ′(v)f ′(v)


−

1
2
(α − v)2

f ′′(c)f ′(v)
+

f (v) − f (v)f ′(v)
. (86)

In exact arithmetic we havef (v) = f (v) andf ′(v) = f ′(v), then it shows that Newton’s method is quadratic convergent.
Note that for ω ≪ 1 in Assumption 1 (63), 1 −

f ′(v)f ′(v)
will be close to zero, then the rate of convergence of iteration is nearly

quadratic. It can be predicted that the adoption of accurate computing derivative does not obviously reduce the number of
iterations, when the problem is not too ill-conditioned.

When the sequence converges, we present the error bounds of the three algorithms under Assumption 4 (66). It is
required that µ2 should not be too small, which is not a strong assumption and usually can be fulfilled. From (76)–(79),
considering that E∗ has a constant multiplicative factor u, we can assert that the accuracy guaranteed by the algorithm
depends on the accuracy with which the residual is computed, that isf (v∗) − f (v∗). On the contrary, due to Assumption 1
(63), the computation of the derivative in floating point arithmetic only results in the largest perturbation 1

1−ω
in (78), then

we deem that the accuracy, withwhich the derivative is computed, has little effect on the final accuracy. It is also interesting
to note that in the error bound (84) with adopting the accurate residual computation, if γ 2

2ncondroot(p, v∗) ≈ Ru for some
constant R, it is expected to obtain a relative error of order O(u).

8.2. Example

To illustrate the effectiveness and accuracy of Algorithm 6, we compare Algorithms 4–6 by computing the simple real
zero of the expanded form of the polynomial pn(x) = (x− 1)n − 2−31, for n = 2 : 55, the condition number of which varies
roughly from 104 to 1032 at the real zero. Note that, if n is even, there are two real roots: 1± 2−M/n; if n is odd, there is only
one real root 1 + 2−M/n. We set the initial value v0 = 2, then considering the local convergence property of the Newton
method, we deem that the iteration sequence will converge to the real root α = 1 + 2−M/n.

There are two possible stopping criteria for terminating the iterative process: a stopping test based on the residual
f (xk) < ε and on the increment |xk+1 − xk| < tol. If n is large, we will obtain p′

n(α) = n(α − 1)n−1
≪ 1, then the

first stopping test is not reliable (see details on pp. 237 in [21]). Hence, in our example, we choose the stopping criterion
|vk+1 −vk| < tol = 10−15 and set the maximum admissible number of steps for the iterative process as Num = 100.

We carry out some numerical experiments in MATLAB 7.0, for which the unit roundoff error is u = 2−53
≈ 1.12×10−16.

First, we consider the evaluation for the values in the assumptions in Theorem 6 and the partial results are reported in Fig. 5.
Here, we use symbolic toolbox in MATLAB to compute the values of Assumptions 1–4. We can observe that all the four
assumptions are fulfilled to Algorithm 6 for condition number varying from 104 to 1030 corresponding to n = 2 : 53, to
Algorithms 4 and 5 only for condition number roughly from 104 to 1014 and 1015, respectively, corresponding to n = 2 : 19
and n = 2 : 22.

Clearly for ω =
1
3 , µ1 =

4
3 , µ2 =

1
3 , we have the following two forward error bounds on the condition that the

assumptions are met.

Algorithm 4 :

α − v∗

v∗

 < 10γ2ncondroot(p, v∗),

Algorithms 5 and 6 :

α − v∗

v∗

 < 4u + 6γ 2
2ncondroot(p, v∗).

Fig. 6 shows the relative accuracy |v∗ −α|/|v∗|, where α is the exact root and v∗ is the computed value by three algorithms.
We also plot the a priori error estimations.

As we can see, Algorithm 6 is as accurate as Algorithm 5, if the condition number is less than 1016, and yields nearly
a full precision. However, when the condition number is equal to or greater than 1016, the inaccurate evaluation for the
derivative causes the convergence failure of Algorithm 5 as predicted by the second one in Fig. 5. In contrast, Algorithm 6
still converges and presents the accuracy which decreases almost linearly. Considering that the first three assumptions in
Theorem 6 are sufficient but not necessary for the iteration’s convergence, it is reasonable that even though in Algorithm 5
the assumptions is not fulfilled, with respect to the condition numbers between 1015 and 1016, the iterative process still
converges. Here, ‘‘converge’’ means that iteration stops with satisfying the increment stopping criteria tol and then the
iteration number is smaller than the maximum admissible number Num.

In the numerical tests we find a phenomenon, that is some iterations stop for the maximum admissible number of
iteration steps without satisfying the increment stopping criteria. There are two reasons. One is that the iteration does
not converge. The other is that the increment stopping criteria tol may be too small for some iteration.

Most of the caseswith this phenomenonare due to the first reason. ForAlgorithm4, it usually happenswhen the condition
number is larger than1010 with thepercentage about 87.04%. For Algorithm5, it usually happenswhen the conditionnumber
is larger than 1016 with the percentage 61.11%. We perform the numerical tests for tol = 10−8, . . . , 10−15 with the largest
maximum iteration number Num = 100. Then we find that, for Algorithms 4 and 5, the percentages of the phenomenon

44 H. Jiang et al. / Journal of Computational and Applied Mathematics 243 (2013) 28–47

Fig. 5. Assumption values of three algorithms with respect to condition number. Here, Assumptions 1 and 2 represent the largest |f ′(v) − f ′(v)/f ′(v)|

and the largest f (v)/f ′(v)(v − α) for all of the iterates v with respect to some condition number, respectively; Assumption 3 represents the summation of
Assumption 2 and double Assumption 1; Assumption 4 represents the smallest f (v∗)/f ′(v∗)(v∗ − α) with respect to some condition number.

Fig. 6. Accuracy of the three algorithms with respect to the condition number.

happening are nearly the same. Hence, we affirm that the reason is that the iteration does not converge. Finally, we deem
that Algorithms 4 and 5 do not converge in the case of too-ill conditioned problem.

However, for Algorithm6, this phenomenonhappens ononly a fewpoint (about 7.41%)with tol = 10−15 andNum = 100.
If we reset tol = 10−8, we found that no iteration stop for the maximum admissible number. Hence, we deduce in this case
the phenomenon is due to the setting of the increment stopping criteria tol. Comparing with the exact Newton method, our
method (Algorithm 6) still has the rounding errors, so sometimes the numerical iteration of our method has an oscillation
near the convergence result. If tol is not small enough, the iteration seems to converge. But if tol is small enough, the

H. Jiang et al. / Journal of Computational and Applied Mathematics 243 (2013) 28–47 45

Fig. 7. Accurate computing derivative’s effect on the rate of convergence of Newton’s method.

effectiveness of oscillation will be significant, then it seems that the iteration does not converge. Whatever we can deem
that Algorithm 6 converges in the case of too-ill conditioned problem.

Obviously, for Algorithms 4 and 5, when the iteration does not converge, the larger maximum admissible number of
iteration is useless. Also for Algorithm 6, if tol is small enough, it is useless using larger maximum admissible number. The
discussion above also shows that it is a good option to choose the maximum admissible number of iteration Num = 100
and the increment stopping criteria tol = 10−15 in Fig. 6.

We also present the behavior of the convergence rate of Algorithms 5 and 6 when the problem is not too ill-conditioned.
The results in Fig. 7 illustrate, as predicted by our analysis before, that the accurate computing the derivative has no obvious
effect on the rate of convergence for the iteration. Hence, if the problem is not too ill-conditioned (condition number
is smaller than 1015), it is not required to accurately compute the derivative. In contrast, it is necessary to compute the
derivative accurately to guarantee the convergence of iterative process when the problem is too ill-conditioned.

In conclusion, the adoption of accurate evaluation for the derivative guarantees the convergence of Newton’s method
when the problem is ill-conditioned, and that of accurate evaluation for the residual improves the accuracy of final iterative
result.

9. Conclusion and future work

In this paper we have provided and analyzed the compensated Horner derivative algorithm for accurate evaluation
derivatives of a polynomial in power basis. The results confirm that the algorithm can yield an evaluation as accurate as
if computed with twice working precision and rounded back to working precision. Numerical tests illustrate the proposed
algorithm performs more well than the other competitive algorithm, such as the original algorithm in the double–double
format. A simple application of the proposed is performed showing its effectiveness.

As the future work, we will consider using our compensated Horner derivative algorithm to accurately compute p′(x)
or p′′(x), when the root has multiplicity, then by which, we can modify Newton and other higher-order iterations. For
the evaluation of the derivative of the polynomials in other forms, we will also propose new accurate algorithms. The
compensated de Casteljau algorithm to accurately evaluate the derivative of a polynomial in Bernstein form has been
proposed in [22]. For the evaluation of pth derivative of Jacobi series, which is studied in [23], the corresponding accurate
compensated algorithm will be considered based on [24].

Acknowledgments

The authors are thankful to the reviewers and editor for their valuable comments and suggestions.

Appendix. Double–double library

TheQDpackage [16,25],which provides double–double andquad-double arithmetic, is based on the following algorithms
for the accurate addition and multiplication of two IEEE 64-bit operands using rounded arithmetic, due to Knuth [11] and
Dekker [12]:

Algorithm 7 ([11]). Error-free transformation of the sum of two floating-point numbers

function [x, y] = TwoSum(a, b)
x = a ⊕ b
z = x ⊖ a
y = (a ⊖ (x ⊖ z)) ⊕ (b ⊖ z)

46 H. Jiang et al. / Journal of Computational and Applied Mathematics 243 (2013) 28–47

Algorithm 7 requires 6 flops.

Algorithm 8 ([12]). Error-free transformation of the sum of two floating-point numbers (|a| ≥ |b|)

function [x, y] = FastTwoSum(a, b)
x = a ⊕ b
y = (a ⊖ x) ⊕ b

Algorithm 7 requires 3 flops.

Algorithm 9 ([12]). Error-free split of a floating-point numbers into two parts

function [x, y] = Split(a)
c = factor ⊗ a (in double precision factor = 227

+ 1)
x = c ⊖ (c ⊖ a)
y = a ⊖ x

Algorithm 9 requires 4 flops.

Algorithm 10 ([12]). Error-free transformation of the product of two floating-point numbers

function [x, y] = TwoProd(a; b)
x = a ⊗ b
[a1, a2] = Split(a)
[b1, b2] = Split(b)
y = a2 ⊗ b2 ⊖ (((x ⊖ a1 ⊗ b1) ⊖ a2 ⊗ b1) ⊖ a1 ⊗ b2)

Algorithm 10 requires 17 flops.

Algorithm 11 ([15]). Addition of a double–double number and a double–double number

function [rh, rl] = add_dd_dd(ah, al, bh, bl)
[sh, sl] = TwoSum(ah, bh)
[th, tl] = TwoSum(al, bl)
sl = sl ⊕ th
th = sh ⊕ sl
sl = sl ⊖ (th ⊖ sh)
tl = tl ⊕ sl
[rh, rl] = FastTwoSum(th, tl)

Algorithm 11 requires 20 flops.

Algorithm 12 ([15,17]).Multiplication of a double–double number by a double number

function [rh, rl] = prod_dd_d(ah, al, b)
[th, tl] = TwoProd(ah, b)
tl = al ⊗ b ⊕ tl
[rh, rl] = FastTwoSum(th, tl)

Algorithm 12 requires 22 flops.

Algorithm 13. Horner derivative algorithm in double–double arithmetic

function [resh, resl] = DDHD(p, x, k)
yhj

i = 0, for i = 0 : 1 : k, and j = n + 1 : −1 : 0
yhj+1

−1 = aj, for j = n : −1 : 0
ylji = 0, for i = 0 : 1 : k, and j = n + 1 : −1 : 0
for j = n : −1 : 0

for i = min(k, n − j) : −1 : max(0, k − j)
[rh1, rl1] = prod_dd_d(yhj+1

i , ylj+1
i , x);

[yhj
i, yl

j
i] = add_dd_dd(rh1, rl1, yhj+1

i−1, yl
j+1
i−1)

end
end
resh = k! × yh0

k
resl = k! × yl0k

H. Jiang et al. / Journal of Computational and Applied Mathematics 243 (2013) 28–47 47

References

[1] K.H. Müller, Rounding error analysis of Horner’s scheme, Computing 30 (1983) 285–303.
[2] F.W.J. Olver, Error bounds for polynomial evaluation and complex arithmetic, IMA J. Numer. Anal. 6 (1986) 373–379.
[3] C.S. Burrus, Horner’s method for evaluation and deflating polynomials, connexions, November 28, 2007. http://cnx.org/content/m15099/1.6/.
[4] N.J. Higham, Accuracy and Stability of Numerical Algorithm, second ed., SIAM, Philadelphia, 2002.
[5] S. Graillat, P. Langlois, N. Louvet, Algorithms for accurate, validated and fast polynomial evaluation, in: Verified Numerical Computation, Japan J.

Indust. Appl. Math. 26 (2009) 191–214.
[6] S. Graillat, P. Langlois, N. Louvet, Compensated Horner scheme, Research Report RR2005-04, LP2A, University of Perpignan, France, July 2005.
[7] P. Langlois, N. Louvet, How to ensure a faithful polynomial evaluation with the compensated Horner algorithm, in: P. Kornerup, J.M. Muller (Eds.),

18th IEEE International Symposium on Computer Arithmetic, IEEE Computer Society, 2007, pp. 141–149.
[8] S.M. Rump, T. Ogita, S. Oishi, Accurate floating-point summation part I: faithful rounding, SIAM J. Sci. Comput. 31 (2008) 189–224.
[9] S.M. Rump, T. Ogita, S. Oishi, Accurate floating-point summation part II: sign, K -fold faithful and rounding to nearest, SIAM J. Sci. Comput. 31 (2008)

1269–1302.
[10] T. Ogita, S.M. Rump, S. Oishi, Accurate sum and dot product, SIAM J. Sci. Comput. 26 (2005) 1955–1988.
[11] D.E. Knuth, The Art of Computer Programming: Seminumerical Algorithms, third ed., Addison-Wesley, 1998.
[12] T.J. Dekker, A floating-point technique for extending the available precision, Numer. Math. 18 (1971) 224–242.
[13] W. Miller, Graph transformations for Roundoff analysis, SIAM J. Comput. 5 (1976) 204–216.
[14] O. Caprani, Roundoff errors in floating-point summation, BIT 15 (1975) 5–9.
[15] X.S. Li, J.W. Demmel, D.H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, S.Y. Kang, A. Kapur, M.C. Martin, B.J. Thompson, T. Tung, D.J. Yoo, Design,

implementation and testing of extended and mixed precision BLAS, ACM Trans. Math. Softw. 28 (2) (2002) 152–205.
[16] D.H. Bailey, Library for double–double andquad-double arithmetric, QDLibrary. Available from:http://www.nersc.gov/~dhbailey/mpdist/mpdist.html.
[17] N. Louvet, Compensated algorithms in floating-point arithmetic: accuracy, validation, performances, Ph.D. Thesis, Université de PerpignanViaDomitia,

November, 2007.
[18] P. Langlois, N. Louvet, More instruction level parallelism explains the actual efficiency of compensated algorithms, Technical Report, hal-00165020,

DALI Research Team, University of Perpignan, France, 2007.
[19] F. Tisseur, Newton’s method in floating point arithmetic and iterative refinement of generalized eigenvalue problems, SIAM J. Matrix Anal. Appl. 22

(4) (2001) 1038–1057.
[20] S. Graillat, Accurate simple zeros of polynomials in floating point arithmetic, Comput. Math. Appl. 56 (2008) 1114–1120.
[21] A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, second ed., Springer Verlag, 2007.
[22] H. Jiang, S.G. Li, L.Z. Cheng, F. Su, Accurate evaluation of a polynomial and its derivative in Bernstein form, Comput. Math. Appl. 60 (2010) 744–755.
[23] R. Barrio, J.M. Peña, Numerical evaluation of the pth derivative of Jacobi series, Appl. Numer. Math. 43 (2002) 335–357.
[24] H. Jiang, R. Barrio, H.S. Li, X.K. Liao, L.Z. Cheng, F. Su, Accurate evaluation of a polynomial in Chebyshev form, Appl. Math. Comput. 217 (2011)

9702–9716.
[25] Y. Hida, X.Y. Li, D.H. Bailey, Algorithms for quad-double precision floating point arithmetic, in: 15th IEEE Symposium on Computer Arithmetic, IEEE

Computer Society, 2001, pp. 155–162.

http://cnx.org/content/m15099/1.6/
http://www.nersc.gov/~dhbailey/mpdist/mpdist.html

	Accurate evaluation of the k -th derivative of a polynomial and its application
	Introduction
	Preliminaries
	Horner derivative algorithm
	Compensated Horner derivative algorithm
	Accuracy of the compensated Horner derivative algorithm
	Running error bound for compensated Horner derivative algorithm
	Numerical experiments
	Accuracy of the compensated Horner derivative algorithm
	Computational complexity and running time performances

	Simple application
	Forward error
	Example

	Conclusion and future work
	Acknowledgments
	Double--double library
	References

