
Reproducible Triangular Solvers for
High-Performance Computing

Roman Iakymchuk∗†, David Defour‡, Sylvain Collange§, Stef Graillat∗
∗Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005 Paris, France

Email: {stef.graillat, roman.iakymchuk}@lip6.fr
†Sorbonne Universités, UPMC Univ Paris 06, ICS, F-75005 Paris, France

‡DALI–LIRMM, Université de Perpignan, 52 avenue Paul Alduy, F-66860 Perpignan, France

Email: david.defour@univ-perp.fr
§INRIA – Centre de recherche Rennes – Bretagne Atlantique, Campus de Beaulieu, F-35042 Rennes Cedex, France

Email: sylvain.collange@inria.fr

Abstract—On modern parallel architectures, floating-point
computations may become non-deterministic and, therefore, non-
reproducible mainly due to non-associativity of floating-point
operations. We propose an algorithm to solve dense triangular
systems by leveraging the standard parallel triangular solver and
our, recently introduced, multi-level exact summation approach.
Finally, we present implementations of the proposed fast repro-
ducible triangular solver and results on recent NVIDIA GPUs.

Keywords—Triangular linear system, substitution algorithm,
reproducibility, accuracy, superaccumulator, error-free transforma-
tions, GPU accelerators.

I. INTRODUCTION

Exascale computing (1018 operations per second) is likely
to be reached within a decade. Thanks to this increasing
computational power of many- and multi-core architectures we
are able to solve more complex and/or larger problems. That,
consequently, leads to the higher number of floating-point
operations to be performed, each of them potentially causes
a round-off error. Floating-point operations like addition and
multiplication are non-associative, so that, for instance, parallel
implementations of the Basic Linear Algebra Subprograms
(BLAS) routines become non-reproducible. Hence, the result
may vary from one parallel machine to another or even from
one run to another. These discrepancies worsen on heteroge-
neous architectures – such as clusters with accelerators like
GPUs – which combine together programming environments
that may obey various floating-point models and offer differ-
ent intermediate precision or different operators [19]. Non-
determinism of floating-point calculations in parallel programs
causes validation and debugging issues and may even lead
to deadlocks [3]. It is expected that these problems will get
increasingly critical as the trend towards large-scale heteroge-
neous platforms continues [1].

Solving a dense triangular linear system (corresponds to
the TRSV routine in BLAS) is an important building block
for many numerical linear algebra problems, which arise in
many science and engineering simulations. The solution of a
system of linear equations with n equations and n unknowns
is generally presented in a matrix form as Ax = b, where A is
an n×n matrix and both x and b are vectors of length n. While
this general system of equations requires O(n3) operations to

get the solution, the special case where A is a triangular matrix
(contains zeros either above or below the main diagonal)
is considerably cheaper to solve, requiring O(n2) operations
only. The triangular solver is usually treated as the second
stage of the Gaussian elimination or the following step of the
LU decomposition.

Unfortunately, the performance of the parallel naive tri-
angular solver is notoriously poor and resilient to efficient
parallelization. Because of long dependency chains, there is
little inherent concurrency in the algorithm. Low data reuse
also means the solver has a low arithmetic intensity. Thus,
communication cost is high compared to computation, leaving
headroom to perform extra operations at no cost, especially
on modern architectures. Concurrency has been addressed
through classical parallel implementations such as the “fan-in”,
“fan-out”, or column sweep algorithm as well as the “wave-
front” and “cyclic” algorithm, referred as the Li-Coleman
algorithm [13], [4], [9]. However, none of these parallel
implementations can ensure the reproducibility of results due
to their parallel nature.

On this class of problems, reproducibility may be addressed
using two solutions. The first one consists in providing a
deterministic control of rounding errors by, for example,
enforcing the execution order for each operation. However,
this solutions is not portable and do not scale well with the
number of processing cores. The second aims at avoiding
cancellation and rounding errors by using, for example, a
superaccumulator [11]. Indeed, superaccumulators guarantee
the accuracy of the solution, but for the cost of more operations
per data.

In this work, we address the problem of reproducibility for
substitution algorithms due to cancellation and rounding errors
that occur during multiplications and additions within the inner
loop. We apply our multi-level summation approach based on
superaccumulators [2] that allows us to perform accumulation
in any order without loosing a bit of information. Therefore,
the work can be distributed in any fashion (row- or column-
wise or per block) that allows to exploit concurrency while
achieving reproducibility.

The paper is organized as follows. Section II reviews
floating-point expansions and superaccumulators. Section III
introduces our multi-level approach to solve triangular systems.

2015 12th International Conference on Information Technology - New Generations

978-1-4799-8828-0/15 $31.00 © 2015 IEEE

DOI 10.1109/ITNG.2015.63

353

Section IV presents implementations and results on GPUs.
Finally, we discuss future work and conclusions in Section V.

II. BACKGROUND

Floating-point (FP) arithmetic consists in approximating
real numbers with a significand, an exponent, and a sign.
The IEEE-754 standard, which was revised in 2008, speci-
fies floating-point formats and operations. In this paper, we
consider the binary64 or double precision format, although
our strategy applies to the other formats as well.

Non-associativity of floating-point addition comes from
rounding errors while accumulating numbers with different
exponents. It leads to the elimination of the lower bits of the
sum. In contrast, the subtraction between numbers of the same
sign and the same exponent is always exact. However, due
to the cancellation, it amplifies the impact of previous errors.
Thus, the accuracy of a floating-point summation depends on
the order of evaluation. More detailed information can be
found in the main references for floating-point arithmetic [6],
[16].

Two approaches exist to perform floating-point addition
without incurring round-off errors. The first approach aims
at computing the error which occurs during rounding using
error-free transformations, see Section II-A. The second ap-
proach exploits the finite range of representable floating-point
numbers by storing every bit in a very long vectors of bits,
see Section II-B.

A. Floating-Point Expansion

In order to perform summations exactly, one has to recover
errors which occurred while rounding and keep track of them.
FP expansions represent the result as an unevaluated sum of
FP numbers, whose components are ordered in magnitude
with minimal overlap to cover a wide range of exponents.
Floating-point expansions of size 2 and 4 are described
in [12] and [5], accordingly. They are based on error-free
transformation (EFT). Indeed, when working with rounding-
to-nearest, the rounding error in addition or multiplication can
be represented as a floating-point number and can also be
computed in floating-point arithmetic. The traditional EFT for
the addition is TwoSum [10], Alg. 1, and for the multiplication
is TwoProduct [17], Alg. 2. For TwoProduct, we use
the fused-multiply-and-add (FMA) instruction that makes it
possible to compute a× b+ c with only one rounding.

Algorithm 1: Error-free transformation for the sum of
two floating-point numbers in double precision.

Function [r, s] = TwoSum(a, b)
r ← a+ b
z ← r − a
s← (a− (r − z)) + (b− z)

One can notice that adding one FP number to an expansion
is an iterative process. The FP number is first added to the
head of the expansion and the rounding error is recovered as
a floating-point number using an EFT such as TwoSum. The
error is then recursively accumulated to the remainder of the
expansion. With expansions of size n – that correspond to the

Algorithm 2: Error-free transformation for the product
of two floating-point numbers in double precision.

Function [r, s] = TwoProduct(a, b)
r ← a ∗ b
s← fma(a, b,−r)

unevaluated sum of n floating-point numbers – it is possible to
accumulate floating-point numbers without losing accuracy as
long as every intermediate result can be represented exactly
as a sum of n FP numbers. This situation happen when
the dynamic range of the sum is lower than 253×n (for
binary64).

The main advantage of this solution is that the expansion
can stay in registers during the computations. However, the
accuracy is insufficient for the summation of numerous FP
numbers or FP numbers with a huge dynamic range. Moreover,
the complexity of this approach grows linearly with the size
of the expansion.

B. Superaccumulator

An alternative to expansions is to use a very long fixed-
point accumulator or superaccumulator. The length of the
accumulator is chosen such that every bit of information of
the input format can be represented (binary64 in our case);
this covers the range from the minimum representable floating-
point value to the maximum value, independently of the sign.
For instance, Kulisch [11] proposed to use an accumulator
of size 4288 bits to handle the accumulation of products of
binary64 values. The addition is performed without loss of
information by accumulating every floating-point input number
in the superaccumulator, see Fig. 1. The superaccumulator is a
solution to produce the exact result of a very large amount of
floating-point numbers of arbitrary magnitude. However, for
a long period this approach was considered impractical as it
induces a very large memory overhead. Furthermore, without
dedicated hardware support, its performance is limited by
indirect memory accesses that make vectorization challenging.

Fig. 1: Superaccumulator.

C. Multi-level exact summation

The multi-level approach to summation splits the compu-
tation in the substitution algorithm into five stages: filtering,
private superaccumulation, scalar superaccumulation, round-
ing, scatter/gather [2]. This decomposition is suitable for the
nested parallelism of modern architectures and maps efficiently
to GPUs.

The first stage uses floating-point expansions with error-
free transformations for the multiplication and the addition

354

of two floating point numbers, see Algs. 1 and 2. Each
thread maintains its own floating-point expansion that is stored
in registers. In order to maintain expansions of size n, we
extend the approach from Alg. 1 and derive Alg. 3. A GPU
implementation will allocate one expansion per thread.

Algorithm 3: Error-free transformation of size n.

Function ExpansionAccumulate(x)
for i = 0→ n− 1 do

(ai, x)← TwoSum(ai, x)
end
if x �= 0 then

Superaccumulate(x)
end

In case the accuracy provided by floating-point expan-
sions is not enough, then the remaining rounding error is
accumulated to private superaccumulators. At the end of the
summation, the contents of the expansion is also accumulated
to the same superaccumulators. Depending on the amount
of memory available, private superaccumulators are stored in
either fast local memory, e.g. cache or shared memory, or
global memory.

In the third stage, k private superaccumulators are merged
into a single scalar superaccumulator. The rounding of the
scalar superaccumulator back to the desired floating-point
format is performed in the fourth stage in order to obtain
the correctly rounded results. And, the division by diagonal
element is calculated in the same floating-point precision.
Finally, the computed elements of the solution are scattered
to the other computing units. At the end of the computation,
the solution is constructed by gathering the computed parts.

III. REPRODUCIBLE TRIANGULAR SOLVERS

In this section we describe our multi-level reproducible
approach for solving triangular systems. At first we present the
sequential triangular solvers and, then, we derive our parallel
reproducible substitution algorithm.

The system Lx = b, where L is a non-unit lower
triangular matrix, can be solved using the formula xi =
(bi−

∑i−1

j=1
lijxj)/lii. In this case, elements of x are computed

from first to last. A sequential algorithm for computing forward
substitution is presented in Alg. 4.

Algorithm 4: Forward substitution. L ∈ Rn×n is a
nonsingular lower triangular matrix.

x1 = b1/l11
for i = 2 : n : 1 do

s = bi
for j = 1 : i− 1 do

s = s− lijxj

end
xi = s/lii

end

We focus on an algorithm for lower triangular systems as
the results for back substitution have obvious analogues for

forward substitution. In the sequel of this paper, we denote T
as a matrix that can be either upper or lower triangular.

A. Hierarchical Scheme for Triangular Solvers

In order to parallelize Alg. 4, the work should be equally
(optimistic scenario) distributed among parallel compute units
such as processes (could be work-groups in case of GPUs) and
threads. A common approach, which is used in the GotoBLAS
(now OpenBLAS) library and is described in [7] for GPUs,
is to split the matrix and both the right-hand side and the
solution vectors into blocks and conduct the computations
on those blocks. Fig. 2a represents Goto’s implementation of
TRSV in which the matrix is divided into diagonal blocks and
panels underneath these blocks. In this case the computation
is organized as follows: each diagonal block of size bs × bs
(bs = 32, 48, 64, ...) is solved using the private routine
xTRSV_NLN that finds the solution of a linear system with a
non-transpose (N) non-unit (U) lower (L) triangular matrix; the
remainingpart of each panel is computed by standard GEMV
– a matrix-vector multiplication routine of the BLAS.

TRSV

TRSV

TRSV

TRSV

GEMV

GEMV

GEMV

bs

(a) GotoBLAS

bs

wg1

wg0

wg3

wg2

(b) GPU’s

Fig. 2: Partitioning of a lower triangular matrix L, where bs stands
for a block size and wgx corresponds to a work group x.

We construct our multi-level reproducible substitution al-
gorithm in a similar manner to Goto’s and Hogg’s [7] (depicted
in Fig. 2b) TRSV by, in addition, integrating our hierarchical
summation approach [2]. Hence, due to the dependency on the
solution of diagonal blocks, the parallel substitution algorithm
proceeds with the panel-step, meaning it is a loop over
n/bs panels. Thus, the optimal amount of threads to perform
computations would be n × k, where k ≤ bs. By following
this assumption, each group of threads of size bs×k would be
responsible of computing bs values of the resulting vector x. In
order to avoid conflicts and collisions, TRSV on the diagonal
block is performed using only bs × 1 threads. This actually
advocates the usage of GEMV which utilizes bs× k threads.

B. Accuracy for the general case

The classic way to compute the condition number of matrix
A is cond(A) = ‖A−1‖‖A‖. Skeel introduced an alternative
method to compute the condition number of linear system
Ax = b with real coefficients as [18], [6]

cond(A, x) =
‖|A−1||A||x|‖∞

‖x‖∞
. (1)

355

In the case of triangular systems Tx = b, we have the
following estimate of the relative forward error

‖x− x̂‖

‖x‖
≤ nucond(T, x) + O(u2), (2)

where u denotes the rounding unit, e.g. u = 2−53 for
binary64, and n is a size of the triangular system.

C. Accuracy when x is exactly representable

In this section we will show that the proposed method
provides full accuracy independently of the condition number
of the problem when the result x is exactly representable and
neither overflow nor underflow occurs.

Theorem 3.1: Let the triangular system Tx = b, where
T ∈ Rn×n is nonsingular, be solved by substitution, with any
ordering. In addition, every element of the matrix T as well as
the vector b is exactly representable in the destination format,
i.e. binary64. If we know that the resulting vector x is exactly
representable in the destination format as well, then using our
multi-level reproducible algorithm, we can recover vector x in
one pass independently of the condition number.

Proof: As the proposed method is insensitive to the order
of operations, let us consider without loss of generality the
sequential algorithm given in Alg. 4 to solve a triangular
system Lx = b. We will prove by induction that if xi−1 is
exactly recovered, then xi will be exactly recovered using our
algorithm.

Both b1 and l11 are exactly representable, so by definition
x1 is exactly representable as well. This means that the division
b1/l11 is exact without any rounding error. Therefore, the
theorem is valid for x1.

Let all xj be recovered exactly using our algorithm for
every j such that 0 ≤ j ≤ i− 1. By definition, we know that
lij is exactly representable, so the result of the multiplication
lij × xj is computed exactly using error-free transformations
for every j such that 0 ≤ j ≤ i − 1. Then, the results is
accumulated exactly in the superaccumulator s as long as no
overflow occurs.

By definition we know that xi is exactly representable. This
means that the division s/lii = xi is exact if we consider s as
a long vector. We now have to prove that

fl

(
fl

(
fl(s)

lii

)
+ fl

(
s− fl(s)

lii

))
= xi (3)

is correct, where fl(y) is a floating-point number such that
fl(y) = y(1 + δ) and |δ| ≤ u (u corresponds to the unit
roundoff, u = 2−53 in double precision).

Without loss of generality, let consider xi and lii such that
1 ≤ xi, lii < 2. Then 1 ≤ xi×lii < 4 with xi×lii = s exactly.
Let introduce p and e such that s = p+ e with p = fl(s) and
e = s− fl(s). Then we have xi =

p

lii
+ e

lii
exactly. We now

have three cases to consider. We should mention that thanks to
Theorem 8.4 from [15], we do not have to consider the case
when the quotient of two floating-point numbers lies exactly
between two representable floating-point numbers.

When 1 ≤ xi × lii < 2. In that case |e| < u. Therefore∣∣∣∣xi −
p

lii

∣∣∣∣ ≤ |e|lii <
u

lii
< u

which means that fl
(

p

lii

)
= xi. As

|e|
lii

< u we have

fl
(
fl

(
p

lii

)
+ fl

(
e
lii

))
= xi and equation 3 is true.

When 2 ≤ xi × lii < 4 and |e| < u× lii. In that case∣∣∣∣xi −
p

lii

∣∣∣∣ ≤ |e|lii < δ

and equation 3 is true as it is similar to the first case.

When 2 ≤ xi × lii < 4 and δ × lii ≤ |e| < 2 × lii. Let
consider the case e > 0. We have

u ≤

∣∣∣∣xi −
p

lii

∣∣∣∣ < 2× u

lii

and p

lii
∈]pred(xi), xi−u[with pred(y) corresponding to the

floating-point number which is immediately before y. There-
fore fl(p

lii
) = pred(xi). In addition, we have e

lii
≥ u which

implies that fl
(
fl

(
p

lii

)
+ fl

(
e
lii

))
= succ(pred(xi)) = xi

with succ(y) corresponding to the floating-point number which
is immediately after y. Therefore, equation 3 is true. The same
method applies to the case e ≤ 0.

IV. IMPLEMENTATIONS AND RESULTS

This section presents our implementations of the multi-
level reproducible triangular solver and their evaluation on
NVIDIA GPUs, see Tab. I for the detailed description of these
architectures. We verify the accuracy of our implementations
by comparing the computed results with the ones produced by
the multiple precision MPFR library on CPUs; the library is
not multi-threaded and does not support GPUs.

TABLE I: Hardware platforms employed in the experimental evalu-
ation.

NVIDIA Tesla K20c 13 SMs × 192 CUDA cores 0.705 GHz

NVIDIA Quadro K5000 8 SMs × 192 CUDA cores 0.706 GHz

A. Implementation

Our implementations attempt to obtain the maximum per-
formance through utilizing all resources of the considered
GPU architectures: SIMD instructions, fused-multiply-and-
add, private and local memory as well as atomic instructions.

We developed both unique and hand-tuned OpenCL im-
plementations for NVIDIA GPUs. One way to implement the
substitution algorithm is to create two kernels: one for TRSV
on diagonal blocks; the other for GEMV on the remaining
parts of each panel. This approach induces a kernel launch
overhead. Instead, we combine two routines into one kernel
and perform synchronization between work-groups through
global memory. This strategy brings two benefits: overlap
between the substitution of the diagonal block on one SM/CU
and matrix-vector multiplications on the other SMs/CUs; a
possibility to mask prefetching of matrix blocks.

356

According to our algorithm, the matrix is divided into
blocks of size bs. Thus, a triangular solver can be associated
with diagonal blocks while a matrix-vector multiplication rou-
tine with off-diagonal blocks. Such work distribution induces
dependency between diagonal and off-diagonal blocks – a
diagonal solver cannot begin until all off-diagonal blocks in
the row have completed and a matrix-vector multiplication
with off-diagonal blocks cannot start until a diagonal solver
in that column has completed. We overcome this dependency
by assigning to each work-group of threads a block-row of the
matrix, see Fig. 2b. Thus, each work-group performs GEMV
on each block within a block-row from left to right and then
executes TRSV. In case the required data for a GEMV is not
ready, the execution waits until it is available and transmitted.

To establish synchronization among work-groups, we use
a single scalar in global memory that tracks a number
of completed row. This is due to the fact that TRSV on
diagonal blocks has to be computed in order, thus it is
enough to store the latest completed row. To ensure that the
vector of solution is visible to all work-groups we apply
barrier(CLK_GLOBAL_MEM_FENCE) before increment-
ing the counter.

An extra synchronization step is required to dynamically
assign matrix rows to work-groups since there is no guarantee
that work-groups will run in index order. Static allocation
would potentially lead to deadlocks. Thus, dynamic allocation
is preferred that is accomplished using a global variable in
conjunction with atomic increment. The proposed two global
memory synchronizations need to be initialized before the
execution of TRSV on the whole matrix though a trivial kernel
run with a single thread.

B. Relative Forward Error

In all our tests, we rely on the IEEE-754 double precision
format. To carry out the experiments, we wrote a random
generator of very ill-conditioned triangular systems using the
algorithm proposed in [14]; the random generator ensures
that both the matrix T and the right-hand side vector b are
composed of double precision floating-point numbers. In order
to compute the exact solution x and our reproducible solution
x̂r, we benefited from Matlab Simulink symbolic computations
and rounded the result back to double precision.

Fig. 3 presents the relative accuracy, meaning relative
forward error computed by (2), of the classic substitution
algorithm performed in double precision DTRSV and our
reproducible substitution algorithm ExDTRSV versus the con-
dition number. The Skeel condition number (1) varies from 105

to 1035 for matrices of size 40× 40. For those relative errors
that are greater than one, we set them to one, which means
that no accuracy is left; that also makes it clearly visible on the
plot. The results of both double precision and our reproducible
substitutions show that the relative accuracy is proportional
to the rounding unit u; for our substitution algorithm some-
times the relative accuracy is proportional to u2. However,
our substitution algorithm demonstrates the fluctuation in the
relative accuracy. We believe that such behavior is related to
the rounding errors caused by rounding-to-nearest after the
reproducible and accurate summation with superaccumulators
and the final division by diagonal elements of the matrix.

100 1010 1020 1030 1040 1050

10−15

10−10

10−5

100

Condition Number

R
el

at
iv

e
F

or
w

ar
d

E
rr

or

DTRSV
ExDTRSV

Fig. 3: Accuracy of DTRSV and ExDTRSV (our substitution algo-
rithm) with respect to the condition number.

To sum up, the solution computed by our approach has the
accuracy at least of the same order as the standard double
precision substitution or often better (up to nu2cond(T, x)
for systems with condition numbers smaller than 1/(nu2)).
Moreover, when at least one bit of accuracy is guaranteed, our
substitution algorithm always delivers reproducible solution.

C. Performance Results

As a baseline we consider the vectorized and parallelized
non-deterministic double precision substitution algorithm [7];
referred as “Parallel DTRSV” on figures. Figs. 4 and 5 present
the measured time achieved by the substitution algorithms as
a function of the matrix size n on two GPUs, see Tab. I. In the
keys of figures, “Superacc” corresponds to our algorithm that
relies solely on superaccumulators and it is the slowest due
to its extensive memory usage; “FPEn + Superacc” stands
for our algorithm with floating-point expansions of size n
(n = 2 : 8) in conjunction with error-free transformations
and superaccumulators when needed; “FPE6EE + Superacc”
represents our algorithm with the expansion of size 6 and
the early-exit optimization technique [2]. In general, imple-
mentations with expansions deliver better performance than
with superaccumulators only. However, due to switching to
superaccumulators at the end of computing each element
of the solution as well as when the accuracy provided by
expansions is not enough, the gain from expansions is limited.
Thus, there is a space for improvement in these preliminary
results. Nevertheless, the solution computed by our substitution
algorithms is constantly reproducible.

V. CONCLUSIONS AND FUTURE WORK

We presented a multi-level approach to achieve repro-
ducible and accurate solutions of triangular systems composed
of floating-point numbers along with implementations on

357

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e
[s

ec
s]

Matrix size [n]

Parallel DTRSV
Superacc

FPE3 + Superacc
FPE4 + Superacc
FPE6 + Superacc
FPE8 + Superacc

FPE6EE + Superacc

Fig. 4: Performance of substitution algorithms on NVIDIA K20c.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e
[s

ec
s]

Matrix size [n]

Parallel DTRSV
Superacc

FPE3 + Superacc
FPE4 + Superacc
FPE6 + Superacc
FPE8 + Superacc

FPE6EE + Superacc

Fig. 5: Performance of substitution algorithms on NVIDIA K5000.

many-core architectures such as GPUs. Our approach certainly
delivers the same accuracy as double precision and, moreover,
its accuracy is often better in practice. In order to increase
the accuracy, one may consider using double-double precision.
However, this approach is a factor of 9 slower and it is non-
reproducible. Thus, even though the delivered performance of
our preliminary implementations is at least 11 times slower,
which is considered to be improved, the experiments yielded
the reproducible solution at any scenario.

In case when the solution x is exactly representable, we
proved that our algorithm delivers full accuracy regardless of
the condition number of triangular systems. In general case this
may not hold, therefore, we plan to engage one step of iterative
refinement in order to enhance and guarantee the accuracy of
the results.

Our ultimate goal is to apply the multi-level approach to
derive reproducible, accurate, and fast library for fundamental
linear algebra operations – like those included in the BLAS
library – on new parallel architectures such as Intel Xeon Phi
co-processors and GPU accelerators. Moreover, we plan to
conduct a priori error analysis of the derived ExBLAS (Exact
BLAS) routines. More information on the ExBLAS project as
well as its sources can be found in [8].

ACKNOWLEDGEMENT

This work undertaken (partially) in the framework of CAL-
SIMLAB is supported by the public grant ANR-11-LABX-
0037-01 overseen by the French National Research Agency
(ANR) as part of the “Investissements d’Avenir” program (ref-
erence: ANR-11-IDEX-0004-02). This work was also granted
access to the HPC resources of ICS financed by Region Île-
de-France and the project Equip@Meso (reference ANR-10-
EQPX-29-01) overseen by ANR as part of the “Investissements
d’Avenir” program.

REFERENCES

[1] Keren Bergman and al. Exascale computing study: Technology chal-
lenges in achieving exascale systems. DARPA Report, September 2008.

[2] Sylvain Collange, David Defour, Stef Graillat, and Roman Iakymchuk.
Full-Speed Deterministic Bit-Accurate Parallel Floating-Point Summa-
tion on Multi- and Many-Core Architectures. Technical Report HAL:
hal-00949355, INRIA, DALI–LIRMM, LIP6, ICS, February 2014.

[3] K. Doertel. Best known method: Avoid heterogeneous precision in
control flow calculations. Technical report, Intel, August 2013.

[4] M. T. Heath and C. H. Romine. Parallel solution of triangular systems
on distributed memory multiprocessors. SIAM Journal on Scientific and

Statistical Computing, 9:558–588, 1988.

[5] Y. Hida, X. S. Li, and D. H. Bailey. Algorithms for quad-double
precision floating point arithmetic. In Proceedings of the 15th IEEE

Symposium on Computer Arithmetic, pages 155–162. IEEE Computer
Society Press, Los Alamitos, CA, USA, 2001.

[6] N. J. Higham. Accuracy and stability of numerical algorithms, second

ed. Society for Industrial and Applied Mathematics (SIAM), Philadel-
phia, PA, 2002.

[7] J.D. Hogg. A fast triangular solve on GPUs. Technical report, Science
and Technology Facilities Council, 2012. RAL-P-2012-002.

[8] Roman Iakymchuk, Sylvain Collange, David Defour, and Stef Graillat.
ExBLAS – Exact BLAS. https://exblas.lip6.fr/.

[9] S. L. Johnsson. Communication effect basic linear algebra computations
on hypercube architectures. J. Parallel Distrib. Comput., 4(2), 1987.

[10] Donald E. Knuth. The Art of Computer Programming, Volume 2:

Seminumerical Algorithms, third ed. Addison-Wesley, 1997.

[11] Ulrich Kulisch and Van Snyder. The Exact Dot Product As Basic Tool
for Long Interval Arithmetic. Computing, 91(3):307–313, March 2011.

[12] Xiaoye S. Li, James W. Demmel, David H. Bailey, Greg Henry, Yozo
Hida, Jimmy Iskandar, William Kahan, Suh Y. Kang, Anil Kapur,
Michael C. Martin, Brandon J. Thompson, Teresa Tung, and Daniel J.
Yoo. Design, implementation and testing of extended and mixed
precision BLAS. ACM Trans. Math. Softw., 28(2):152–205, 2002.

[13] Li, G. and Coleman, T. F. A new method for solving triangular systems
on distributed-memory message-passing multiprocessor. SIAM J. Sci

and Stat. Comp., 10:382–396, 1989.

[14] Nicolas Louvet. Algorithmes compensés en arithmétique flottante :

précision, validation, performances. PhD thesis, UPVD, 2007.

[15] Peter Markstein. IA-64 and elementary functions: speed and precision.
Prentice Hall, 2000.

[16] Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-
Pierre Jeannerod, Vincent Lefèvre, Guillaume Melquiond, Nathalie
Revol, Damien Stehlé, and Serge Torres. Handbook of Floating-Point

Arithmetic. Birkhäuser, 2010.

[17] Takeshi Ogita, Siegfried M. Rump, and Shin’ichi Oishi. Accurate sum
and dot product. SIAM J. Sci. Comput, 26, 2005.

[18] Robert D. Skeel. Scaling for numerical stability in Gaussian elimination.
J. Assoc. Comput. Mach., 26(3):494–526, 1979.

[19] Nathan Whitehead and Alex Fit-Florea. Precision & performance:
Floating point and IEEE 754 compliance for NVIDIA GPUs. Technical
report, NVIDIA, 2011.

358

