
ACM Communications in Computer Algebra, Vol 46, No. 3, Issue 181, September 2012

Accurate Computing Elementary Symmetric Functions

Hao Jianga,b,c, Stef Graillatc, Roberto Barriod
a School of Science, National University of Defense Technology, Changsha, 410073, China

b The State Key Laboratory for High Performance Computation, NUDT, Changsha, 410073, China
c PEQUAN, LIP6, Université Pierre et Marie Curie, CNRS, Paris, 75005, France

d Dpto. de Matemática Aplicada and IUMA, Universidad de Zaragoza, E-50009 Zaragoza, Spain

Hao.Jiang@lip6.fr,Stef.Graillat@lip6.fr,rbarrio@unizar.es

This work concerns with the numerical computation of the k -th elementary symmetric function (ESF)
with floating-point inputs X = (x1, . . . , xn), which is defined as

S
(n)
k (X) =

∑
1≤π1<···<πk≤n

xπ1xπ2 · · ·xπk
, 1 ≤ k ≤ n. (1)

We focus mainly on the case 2 ≤ k ≤ n − 1. For k = 1, the problem simplifies to the computation of the
sum of floating-point numbers, and for k = n, to the computation of floating-point product. The classic
and widely-used method is the so-called Summation Algorithm, denoted by SumESF, which is essentially the
algorithm used by MATLAB’s poly. The error analysis has been considered in [1], and the result implies
that the algorithm is forward stable. We present the relative forward error bound as follows,∣∣∣∣∣SumESF(X, k)− S

(n)
k (X)

S
(n)
k (X)

∣∣∣∣∣ ≤ 1

k
γ2(n−1)cond(S

(n)
k (X)), with cond(S

(n)
k (X)) =

kS
(n)
k (|X|)

|S(n)
k (X)|

, (2)

where γn = nu/(1−nu) with u be the rounding error unit(in double precision u = 2−53) and absolute value
is to be understood componentwise. However, when performed in floating-point arithmetic, the computed
result by SumESF may still be less accurate than expected due to cancelations. This is why a more accurate
algorithm is required.

By introducing error-free transformation (EFT) to the traditional Summation Algorithm, we propose a
fast and accurate compensated algorithm, which is denoted by CompSumESF and presented in Figure 1. For
a pair of floating-point numbers a, b ∈ F, when no underflow occurs, there exists a floating-point number
y satisfying a ◦ b = x + y with ◦∈{+,−,×}, where x = fl(a ◦ b) is the usual floating-point approximation
and y represents the exact rounding error. The transformation (a, b) −→ (x, y) is regarded as an EFT.
The EFT algorithms for the addition and product of two floating-point numbers used in CompSumESF are
TwoSum and TwoProd algorithms, respectively. One can see the details about their properties in [2]. Then,
the forward error bound of our method is∣∣∣∣∣CompSumESF(X, k)− S

(n)
k (X)

S
(n)
k (X)

∣∣∣∣∣ ≤ u+
1

k
γ22(n−1)cond(S

(n)
k (X)), (3)

It is interesting to compare our method with the approach using Bailey’s double-double arithmetic
denoted by DDSumESF. All the results about accuracy measurements are reported on Figure 2, which imply
that the result computed by our method is as accurate as if computed in twice the working precision.
When the problem is not too ill-conditioned it yields nearly full accuracy. We perform numerical tests

102

ISSAC posters

Input: X = (x1 . . . xn)

Output: k-th ESF S
n
k (X) = S

n
k

function S
n
k =CompSumESF(X, k)

Ŝ
i

0 = 1, 1 ≤ i ≤ n− 1; Ŝ
i

j = 0, j > i; Ŝ
1

1 = x1;

ε̂S
i

j = 0, ∀ i, j
For i = 2 : n
For j = Max{1, i+ k − n} : Min{i, k}

[p, β
i

j] = TwoProd(xi, Ŝ
i−1

j−1);

[Ŝ
i

j , σ
i

j] = TwoSum(Ŝ
i−1

j , p);

ε̂S
i

j = ε̂S
i−1

j ⊕ (β
i

j ⊕ σ
i

j)⊕ xi ⊗ ε̂S
i−1

j−1

end

end

S
n
k = Ŝ

n
k ⊕ ε̂S

n

k

Figure 1: Compensated Summation Algorithm

10
5

10
10

10
15

10
20

10
25

10
30

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Condition Number

γ
2(n−1)

cond/k

u+γ
2(n−1)
2 cond/k

SumESF

CompSumESF

DDSumESF

1/u 1/u2

Figure 2: Accuracy of evaluation

about measured running time, using compiler VC++9.0, on a laptop with a Intel(R) Core(TM) i5-2520M
processor, with two cores each at 2.50Ghz. The results show that CompSumESF is as accurate as DDSumESF
but only requires on the average 57% of its measured running time. Moreover, our method only requires
addition and multiplication of floating-point numbers in the same working precision as the given data. As
a consequence, it seems that our method is a simple, fast and accurate algorithm to compute elementary
symmetric functions.

As an application, the ESFs appear when expanding a linear factorization of a polynomial

n∏
i=1

(x− xi) =
n∑

i=0

cix
i =

n∑
i=0

(−1)n−iS
(n)
n−i(X)xi. (4)

It is an option to use our method to accurately evaluate polynomial’s coefficients from zeros, specially to
compute characteristic polynomials from eigenvalues. The computation of ESFs is also an important part
of conditional maximum likelihood estimation of item parameters under the Rasch model in psychological
measurement [3]. It is promising that our method, improving the numerical accuracy, can allow much more
items to be calibrated.

∗This work was supported by the Foundation for Innovative Research Groups of the National Natural
Science Foundation of China (Grant No.60626003), by the Spanish Research project MTM2009-10767 and
by CSC 2011611057.

References

[1] R. Rehman and I.C.F. Ipsen. Computing Characteristic Polynomials from Eigenvalues SIAM. J.
Matrix. Anal. Appl., 32(1):90–114, 2011.

[2] T. Ogita, S.M. Rump, and S. Oishi. Accurate sum and dot product. SIAM J. Sci. Comput., 26:1955-
1988, 2005.

[3] F.B. Baker, and M.R. Harwell. Computing elementary symmetric functions and their derivatives: A
didactic. Appl. Psychol. Meas., 20(2):169–192, 1996.

103

