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Abstract: In the field of scientific computing, the exactness of the calculation 
is of prime importance. That leads to efforts made to increase the precision of 
the floating point algorithms. One of them is to increase the precision of the 
floating point number to double or quadruple the working precision. The 
building block of these efforts is the Error-Free Transformations (EFT). In this 
paper, we develop EFT operations in truncation rounding mode optimised for 
the Cell processor. They have been implemented and used in double precision 
library using only single precision numbers. We compare the performance  
of our library with the native one in double precision on vectors operations. In 
the best case, the performance of our library is very closed to the standard 
double precision implementation. The work could be easily extended to obtain 
quadruple precision. 
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1 Introduction 

The Cell processor, developed jointly by Sony, Toshiba, and IBM, provides a great 
power of calculation with a peak performance in single precision of 204.8 Gflop/s.  
This performance is obtained with a set of SIMD processors which use single precision 
floating point numbers with rounding mode toward zero. 

Most scientific computation utilises floating point arithmetic. For a growing number 
of computations, much higher precision is needed, especially for applications which carry 
out very complicated and enormous tasks in scientific fields, for example1: 

• Quantum field theory 

• Supernova simulation 

• Semiconductor physics 

• Planetary orbit calculations 

• Experimental and computational mathematics, etc. 

Even if other techniques, methods or algorithms are employed to increase the accuracy  
of numerical results, some extended precision is still required to avoid severe numerical 
inaccuracies. 

In this paper, we will study how to implement the double working precision library 
named single-single on the SPEs (Synergistic Processing Elements), which are the 
workhorse processors of the Cell. Our approach is similar to those used by Hida et al. 
(2001) for the quad-double precision arithmetic in the rounding mode to the nearest.  
The next Cell generation will provide powerful computing power in double precision 
with a rounding toward zero. Our library will be easily fit into double-double library 
which will emulate the quad precision. 

This paper begins with a brief introduction to the Cell processor. Then we propose 
algorithms for the operators (+, −, ×, /) of extended precision based on the error-free 
transformations for the rounding mode toward zero. The next section is devoted to the 
implementation of the single-single library on the SPE by taking into account the 
advantages of the SIMD characteristics, among which the most important are the fully 
pipelined single precision instructions set and the FMA (Fused Multiply-Add). Finally, 
the numerical experiments and the test results showing the library performance are 
presented. The code of the library is available at http://pequan.lip6.fr/~lamotte/software/ 
extendedprecision/. 

2 Introduction to the Cell processor 

The Cell processor (Kahle et al., 2005; Williams et al., 2006) is composed of one ‘Power 
Processor Element’ (PPE) and eight ‘Synergistic Processing Elements’ (SPEs). The PPE 
and SPEs are linked together by an internal high-speed bus called ‘Element Interconnect 
Bus’ (EIB) (see Figure 1). 

The PPE is based on the Power Architecture. Despite its important computing power, 
in practical use, it only serves as a controller for the eight SPEs, which perform most of 
the computational workload. 
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Figure 1 Cell processor architecture (taken from IBM website) (see online version for colours) 

 

The SPE is composed of a ‘Synergistic Processing Unit’ (SPU) and a ‘Memory  
Flow Controller’ (MFC), which is devoted to memory transfer via the DMA access.  
The SPE contains an SIMD processor for single and double precision (Jacobi et al., 2005; 
Gschwind et al., 2006), which can perform four simultaneous operations in single 
precision or two operations in double precision. It supports all the four rounding  
modes for the double precision and only the rounding mode toward zero for the single 
precision. 

The instruction set in single precision of the SPE is fully pipelined; one instruction 
can be issued for each clock cycle. It is based on the FMA function, which calculates the 
term a b c∗ +  in one operation and one rounding. With a frequency of 3.2 GHz, each 
SPE can achieve the performance of 2 × 4 × 3.2 = 25.6 GFLOPs on single precision 
numbers. 

For the double precision, the instruction set is not fully pipelined. It is only possible 
to issue one instruction for each seven cycles, so the peak performance of each SPE for 
the double precision is 2 × 2 × 3.2/7 = 1.8 GFLOPs. 

Each SPE has a ‘Local Storage’ (LS) of 256 KB for both data and code. In the 
opposite of the cache memory management, there is no mechanism to load data in  
the LS. It is up to the programmer to explicitly transfer data via DMA function calls.  
The SPE have a large set of registers (128 128-bit registers) which can be used directly 
by the program, avoiding the load-and-store time. 
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3 Floating-point arithmetic and extended precision 

In this section, we briefly introduce the floating point arithmetic and the method to 
extend the precision. In this paper, due to the specific environment of the Cell processor, 
we work only with the rounding mode toward zero. 

In a computer, the set of floating point numbers denoted F is used to represent real 
numbers. A binary floating point number is represented as 

1 1( )1. ... 2 , {0,1},e
p i

mantissa

x x x x−= ± × ∈  

with p the precision and e the exponent of x. We use 12 pε −=  as the machine precision, 
and the value corresponding to the last bit of x is called unit in the last place, denoted 
ulp(x), and 1( ) 2e pulp x − += . 

In the case of the Cell’s single precision, p = 24 and ε = 2–23. These values are similar 
to the IEEE 754 single precision format (IEEE, 1985). These values will be used 
throughout this paper. 

Let x and y be two floating point numbers and let  be a floating point operation 
{ }( )+, , , /∈ − × . It is clear that ( x y ) is a real number, but in most cases it is not 

representable by a floating point number. Let fl( x y ) be the representative floating 
point number of ( x y ) obtained by a rounding. The difference ( x y ) − fl( x y ) 
corresponds to the rounding error denoted err( x y ). 

Given a specific machine precision, the precision of calculation can be increased by 
software. Instead of using a floating point number, multiple floating point numbers can 
be used to represent multiple parts of a real number. This is the idea of the extended 
precision. In our case, a single-single is defined as follows: 

Definition 1: A single-single is a non-evaluated sum of two single precision floating 
point numbers. The single-single represents the exact sum of these two floating point 
numbers: 

a = ah + al. 

There may be multiple couples of two floating point numbers whose sums are equal.  
To ensure a unique representation, ah and al should have the same sign and should satisfy 

|al| < ulp(ah). (1) 

To implement the extended precision, we have to calculate the error produced by single 
precision operations using the error-free transformations presented below. 

3.1 The error-free transformations (EFT) 

Let x and y be two floating point numbers and  be a floating point operation. The  
error-free transformations are intended to calculate the rounding error incurred by  
this operation. The EFTs transform ( x y ) into a couple of two floating point numbers 
(r, e) so that 

r ≈ x y  and r + e = x y . 
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3.1.1 Accurate sum 

There are two main algorithms for the accurate sum of two floating point numbers.  
For example, for the rounding mode to nearest, there is the algorithm proposed by Knuth 
(1998), which uses six standard operations, or the algorithm proposed by Dekker (1971), 
which uses only three standard operations, but with the assumption on the order between 
the absolute values of two input numbers. 

In this paper, we focus only on the rounding mode toward zero, so, it is necessary to 
adapt these algorithms. Priest (1992) has proposed an algorithm for an accurate sum 
using a rounding mode toward zero. To better use the pipelines, we proposed another 
algorithm. 

Algorithm 2: Error-free transformation for the sum with rounding toward zero. 

Two−Sum−toward−zero2 (a, b)  
if (|a| < |b|) 

swap (a , b)  
s = fl (a + b)  
d = fl(s − a)  
e = fl (b − d)  

if (|2 ∗ b| < |d|) 
s = a, e = b 

return (s, e) 

The exactness of the proposed algorithm is provided in the following theorem: 

Theorem 3: Let a and b be two floating point numbers. The result  
(s, e) = Two-Sum-toward-zero2(a, b) satisfies: 

,
( ).

s e a b
e ulp s

+ = +

<
 

The proof of all the theorems of this paper can be found in Nguyen (2007) (in French). 

3.1.2 Accurate product 
The calculation of the error-free transformation for the product is much more 
complicated than the sum (Dekker, 1971), but if the processor has a FMA (Fused 
Multiply-Add) which calculates the term a b c∗ +  in one operation, the classic algorithm 
for the product can be used. 

Algorithm 4: The error-free transformation for the product of two floating point 
numbers. 

Two−Product−FMA (a, b) 

p = fl (a ∗ b) 
e = fma (a, b,−p) 
return (p, e) 

This algorithm is applicable for all the four rounding modes. The basic operation on the 
SIMD unit of the SPE being a FMA, our library implements this algorithm. 
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4 Basic operations of single-single 

4.1 Renormalisation 

Using the rounding toward zero EFTs, we can implement the basic operations for the 
single-single. Most of the algorithms described hereafter often produce an intermediate 
result of two overlapping floating point numbers. To respect the definition of the 
normalisation (1), it is necessary to apply a renormalisation step to transform these two 
floating point numbers into a normalised single-single. The following function is 
proposed: 

1 Renormalise2−toward−zero  (a,b) 

2     if (|a| < |b|) 

3      swap(a,b) 

4     s = fl (a + b) 

5     d = fl (s − a) 

6    e = fl(b − d) 

7 return (s, e) 

Renormalisation is the same for the rounding mode toward zero and to the nearest, but  
in the case of the rounding mode toward zero, it is not possible to give an exact result. 
The following theorem provides an error bound for this algorithm. 

Theorem 5: Let a and b be two floating point numbers. The result returned by 
Renormalise2-toward-zero is a pair of two floating point numbers (s, e) which 
satisfies 

• s and e have the same sign, and |e| < ulp(s), and 

• a + b = s + e + δ, where δ is error of normalisation, and 21
2| | | | .a bδ ≤ × × +ε  

As we will see later, this error is much smaller than the errors produced by the following 
algorithms. To describe them, we use the notations in Figure 2. 

Figure 2 Notations 

 



   

 

   

   
 

   

   

 

   

    Extended precision with a rounding mode toward zero environment 159    
 

    
 
 

   

   
 

   

   

 

   

       
 

4.1.1 Addition 

Figure 3 represents the algorithm for the addition of two single-singles a and b. The 
source code follows: 

1 add_ds_ds (ah,  al,  bh,  bl) 

2    (th,  tl) = Two−Sum−toward−zero  (ah,  bh) 

3    tll = fl (al  +  bl) 

4     tl = fl(tl  +  tll) 

5   (rh, rl) = Renormalise2−toward−zero  (th,  tl) 

6 return  (rh,  rl) 

Figure 3 Algorithm for the addition of two single-singles 

 

With two sums, a Two-Sum-toward-zero and a Renormalise2-toward-zero, 
the cost of the add_ds_ds algorithm is 11 FLOPs. The following theorem provides  
an error bound for this algorithm. 

Theorem 6: Let ah + al and bh + bl be two input single-singles and rh + rl be the result of 
add_ds_ds. The error δ produced by this algorithm satisfies 

2

( ) ( ) ,

| | ( | |, 6 | | .
h l h l h l

l l h l h l

r r a a b b

max a b a a b b

+ = + + + +

< × + × × + + +

δ

δ ε ε
 

4.1.2 The subtraction 

The subtraction of two single-singles a − b is implemented by a sum a + (−b).  
To compute the opposite of a single-single, it is just necessary to get the opposite of the 
floating point components. Therefore, the algorithms for the addition and the subtraction 
are similar. 
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4.1.3 Product 

The product of two single-singles a and b can be considered as the product of two sums 
ah + al and bh + bl so the exact product has four components: 

( ) ( )
.

h l h l

h h l h h l l l

p a a b b
a b a b a b a b

= + × +

= × + × + × + ×
 

Considering ah × bh as a term of order (1)O , this product consists of one term (1)O ,  
two terms (2)O , and one term (3)O . To decrease the complexity of the algorithm, the 
terms of order below (2)O  will not be taken into account. Additionally, using the EFT 
for the product, ah × bh can be transformed exactly into two floating point numbers of 
orders (1)O  and (2),O  respectively. Hence, the product of two single-singles can be 
approximated by: 

(1) (2)

( ) ( ( ) ).h h h l l h h lp fl a b err a b a b a b≈ × + × + × + ×
O O

 

This approximation can be translated into the following algorithm described in Figure 4. 

1 mul_ds_ds (ah,  al,  bh,  bl) 

2    (th, tl) = Two−Product−FMA (ah, bh) 

3    tll = fl (al ∗ bh) 

4    tll = fl (ah ∗ bl + tll) 

5     tl = fl (tl + tll) 

6    (rh, rl) = Renormalise2−toward−zero  (th, tl) 

7 return  (rh,  rl) 

Figure 4 Algorithm for the product of two single-singles 

 

The error bound of the algorithm mul_ds_ds is provided by the following theorem. 
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Theorem 7: Let ah + al and bh + bl  be two single-singles. Let rh + rl be the result 
returned by the algorithm mul_ds_ds applying to ah + al and bh + bl. The error δ of 
this algorithm satisfies 

2| ( ) ( ) ( ) | 8 | ( ) ( ) | .h l h l h l h l h lr r a a b b a a b b+ − + × + < × × + × +ε  

4.1.4 The division 

The division of two single-singles is calculated by the classic division algorithm. 
Let a = (ah, al) and b = (bh, bl) be two single-singles. To calculate the division of a by 

b, we calculate the approximate quotient, qh = ah/bh. 
Then we calculate the residual r = a – qh × b, which allows us to calculate the 

correction term ql = r/bh.  

1 div_ds_ds (a, b) 

2     qh = fl(ah / bh) 

3     tmp1 = fl (ah − qh ∗ bh) 

4     tmp2 = fl (al − qh ∗ bl) 

5     r = fl (tmp1 + tmp2) 

6     ql = fl(r / bh) 

7    (qh,ql) = Renormalise2−toward−zero (qh , ql) 

8 return  (qh, ql) 

The following theorem provides an error estimate for this algorithm. 

Theorem 8: Let a = (ah, al) and b = (bh, bl) be two single-singles, ε the machine 
precision and ε1 the error bound for the single precision division with 1( ) = ( )ε εO O .  
The error of the algorithm div_ds_ds is bounded by: 

( )) ( )( ) ( ))22 3
1 1_ _ , 6.5 7 2 .div ds ds a b a b a bε ε ε ε ε ε⎡ ⎤− < × + × + × + ×

⎣ ⎦
O  

In most of cases we have ε1 = ε. In this case, the error bound of this algorithm is: 

( )2 315.5 .q a b a bε ε⎡ ⎤− < × + ×⎣ ⎦O  

This inequality means that our division algorithm of two single-singles is accurate to  
42 bits on a maximum of 48 bits. The accuracy of this algorithm can be increased  
by calculating another correction term q2, but doing so has a great impact on the 
performance. The execution time over-cost cost more than twice because of two factors: 

• the calculation of (ah + al) − (bh + bl) × (qh + ql), which is one single-single 
multiplication and one single-single subtraction, and 

• the renormalisation of three floating point numbers, which requires two accurate 
sums and one renormalisation of two floating point numbers (Nguyen, 2007). 
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5 Implementation 

The SPE (Synergistic Processor Element) of the Cell processor contains a 32-bit 4-way 
SIMD processor together with a large set of 128 128-bit registers. It can perform  
the operations on the vectors of 16 char/unsigned char, 4 int/unsigned 
int, 4 float, or 2 double. 

The operations on scalars are implemented by using the vector operations. In this 
case, only one operation is performed on the preferred slot instead of 4 on vectors.  
For this reason, we implement only the vector operations for the single-singles. 

Table 1 lists some Cell-specific instructions used in the sequel to write algorithms.  
As we work with vectors, the operations are performed componentwise. 
Table 1 Cell-specific instructions 

Instruction Explanation 
d = spu_add(a, b) d = a + b. 
d = spu_sub(a, b) d = a − b. 
d = spu_mul(a, b) d = a × b. 
d = spu_madd(a, b, c) d = a × b + c. 
d = spu_msub(a, b, c) d = a × b − c. 
d = spu_nmsub(a, b, c) d = −(a × b − c). 
d = spu_nmadd(a, b, c) d = −(a × b + c). 
d = spu_re(a) For each element of vector a, an estimate of its floating-point 

reciprocal is computed. The resulting estimate is accurate to  
12 bits. 

d = spu_cmpabsgt(a, b) The absolute value of each element of vector a is compared  
with the absolute value of the corresponding element of vector b. 
If the element of a is greater than the element of b, all bits of  
the corresponding element of vector d are set to one; otherwise,  
all bits of the corresponding element of d are set to zero. 

d = spu_sel(a, b, pattern) For each bit in the 128-bit vector pattern, the corresponding bit 
from either vector a or vector b is selected. If the bit is 0, the bit 
from a is selected; otherwise, the bit from b is selected. The result 
is returned in vector d. 

5.1 Representation 

A single-single is a pair of two floating point numbers so each vector of 128 bits contains 
two single-singles (Figure 5). Hence, the 128-bit register containing two single-single 
numbers could be seen as a vector of four floating point numbers. 

Figure 5 A vector of 2 single-singles (see online version for colours) 
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5.2 Implementation of the error-free transformations 

The EFT for the product is implemented simply by two instructions: 

1 Two−Prod−FMA  (a,b) 

2    p = spu_mul(a,b) 

3    e = spu_msub(a, b, p) 

4 return (p,e) 

The algorithm of the EFT for the sum begins with a test and a swap. This test limits the 
possibility of parallelism. Hence, we first have to eliminate this test by the following 
procedure: 

• evaluation of the condition. The result is a vector comp of type unsigned int, in 
which a value of zero means the condition holds, and a value of FFFFFFFF means 
opposite 

• computation of the values of the two branches val_1 (if the condition is satisfied) 
and val_2 (if not) 

• selection of the correct value according to the vector of condition by using the bit 
selection function: 

_ ( _ 2,  _1,  ).d spu sel val val comp=  

For each bit in the 128-bit vector comp, the corresponding bit from either vector val2 or 
val1 is selected. If the bit is 0, the bit from val2 is selected; otherwise, the bit from val1 is 
selected. The result is returned in vector d. 

For example, the test and the swap can be coded as follows: 

1   comp = spu_cmpabsgt (b, a) 

2   hi = spu_sel(a, b, comp) 

3   lo = spu_sel(b, a, comp) 

Figure 6 gives a concrete example of this exchange. 

Figure 6 Example of the exchange of two vectors 
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The spu_cmpabsgt and spu_sel instructions cost two clock cycles each. Moreover, 
since the instructions of lines 2 and 3 of this code are independent, they can be pipelined. 
Hence, these three instructions cost only five clock cycles, which is less than a single 
precision operation (six clock cycles for the FMA). 

Applying the same procedure for the last conditional test of the algorithm  
Two-Sum-toward-zero2, this algorithm can be rewritten as follows: 

1 Two−Sum−toward−zero2  (a,b) 

2     comp = spu_cmpabsgt (b, a) 

3     hi = spu_sel(a, b, comp) 

4     lo = spu_sel(b, a, comp) 

5     s = spu_add(a , b) 

6     d = spu_sub(s, hi) 

7     e = spu_sub(lo, d) 

8     tmp = spu_mul(2, lo) 

9     comp = spu_cmpabsgt (d, tmp) 

10     s = spu_sel(s, hi, comp) 

11     e = spu_sel(e, lo, comp) 

12 return  (s, e) 

Note that the addition of a and b does not change after the exchange. Hence, we choose 
to use a + b instead of hi + lo to avoid the instruction dependencies. More precisely,  
the three first instructions for the test and the exchange are independent of the instruction 
of line 5 which costs six cycles, so, they can be executed in parallel2. Figure 7 
emphasises the full independencies of instructions. This algorithm costs 20 clock cycles, 
which is a little bit more than the execution time of three sequential single precision 
operations. 

Figure 7 The dependencies between instructions of algorithm Two-Sum-toward-zero  
(see online version for colours) 
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5.3 Renormalisation 

The implementation of algorithm Renormalise2-toward-zero is similar to the 
Two-Sum-toward-zero2 algorithm but without the conditional test and the 
exchange at the end. 

1 Renormalise2−toward−zero (a,b) 

2     s = spu_add(a, b) 

3     comp = spu_cmpabsgt (b, a) 

4     hi = spu_sel(a, b, comp) 

5     Lo = spu_sel(b, a, comp) 

6     d = spu_sub(s, hi) 

7     e = spu_sub(lo, d) 

8 return (s, e) 

With the same analysis as Two-Sum-toward-zero2, Renormalise2-toward-
zero costs only 18 clock cycles. Now we will use these two functions to implement the 
arithmetic operators of single-singles. 

5.4 Version 1 

The natural version of single-single operations computes one operation on TWO  
single-singles. The SIMD processor allows us to manipulate simultaneously four 32-bit 
floating point numbers at the same time. When applying to vectors of single-singles, we 
can manipulate both the high and low components of these single-singles. 

Using the Two-Sum-toward-zero2 presented above, we calculate the sums  
and the rounding errors of two pairs of high components and also of two pairs of low 
components in the same time. The rounding errors of these two pairs of low components 
is computed, but not used by the algorithm. 

Moreover, in the algorithms, it is necessary to compute operations between high  
and low components. This requires some extra operations to shuffle those components. 
Hence, the first version does not take full advantage of the SIMD processor. We have 
implemented the first version for the sum and the product of single-singles which  
are add_ds_ds_2, mul_ds_ds_2 for two single-singles and cost 50 cycles and  
49 cycles, respectively. 

As we will see later in Section 6, these first versions as well as the versions presented 
below compute correct results except for overflow and underflow cases. 

5.5 Version 2 

The second version computes one operation on FOUR single-singles. It separates the 
high and the low components into two separate vectors (see Figure 8) by using the 
function spu_shuffle of SPE which costs four clock cycles. This solution makes 
possible a better optimisation of the pipelined instructions. 

Then, the operators can be implemented by applying directly the algorithms 
presented above on four operands separated into four vectors. 
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Figure 8 Merging of two vectors (see online version for colours) 

 

The intermediate result of these algorithms is also a pair of vectors which contain 
respectively the four high parts and the four low parts of the result. At the end of the 
algorithm, the result vectors should be built by shuffling the high and the low 
components. 

For example, version 2 for the sum of single-singles is3 

1 add_ds_ds_4 (vect_a1, vect_a2, vect_b1, vect_b2) 

2    a_hi = spu_shuffle (vect_a1, vect_a2, _merge1_vect_) 

3    a_lo = spu_shuffle (vect_a1, vect_a2, _merge2_vect_) 

4    b_hi = spu_shuffle (vect_b1, vect_b2, _merge1_vect_) 

5    b_lo = spu_shuffle (vect_b1, vect_b2, _merge2_vect_) 

6   (s, e) = Two−Sum−toward−zero (a_hi, b_hi) 

7    t1 = spu_add(a_lo, b_lo) 

8    tmp = spu_add(t1, e) 

9    (hi, lo) = Renormalise2−toward−zero (s , tmp) 

10    vect_c1 = spu_shuffle (hi, lo, _merge1_vect_) 

11    vect_c2 = spu_shuffle (hi, lo, _merge2_vect_) 

12 return (vect_c1, vect_c2) 

Figure 9 shows the dependencies between instructions of this function. By using the tool 
spu_timing of IBM, the execution time of this function is 64 clock cycles for four 
single-singles. 

It is the same for the product of single-singles. We have successfully implemented 
version 2 of the product of single-singles, called mul_ds_ds_4, with an execution time 
of 60 clock cycles for four single-singles. Although the first versions of the addition and 
the product are nearly equal (50 and 49 clock cycles, respectively), the product takes  
less operations than the addition so there are more idle clock cycles in the product 
implementation. Hence, when implementing the second version, we can save more clock 
cycles with the product operator. 
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Figure 9 The dependencies between instructions of add_ds_ds_4 (see online version  
for colours) 

 

The implementation of the division is more complicated. As described in the previous 
section, the division of single-singles div_ds_ds is based on the division in single 
precision, although the Cell processor does not support this kind of operation. It provides 
only a function to estimate the inverse of a floating point number called spu_re, which 
allows us to obtain a result precise up to 12 bits. Hence, to implement the division of 
single-singles, we first have to implement division in single precision. 

The procedure to calculate the division of two 32-bit floating point numbers a and b 
is as follows: 

1 calculate the inverse of b, and 

2 multiply the inverse of b with a. 

To improve the precision of the inversion, we use the iterative Newton’s method, 
1  (1 )i i i iinv inv inv inv b+ = + × − × . We also use Newton’s method for the multiplication, 

with a × inverse(b) being the initial value. The division in single precision can be written as 

1 div (a, b) 

2     tmp0 = spu_re(b) 

3     rerr = spu_nmsub(tmp0, b, 1) 

4     inv = spu_madd(rerr, tmp0, tmp0) 

5     Rerr = spu_nmsub(inv, b, 1) 

6     eerr = spu_mul(rerr, inv) 

7     tmp = spu_mul(eerr, a) 

8     q = spu_madd(a, inv, tmp) 

9 return q 

The precision of the algorithm div is provided by the following theorem. 

Theorem 9: Let a and b be two floating point numbers in single precision, ε being the 
machine precision. The relative error of the algorithm div is bounded by 

( ) ( )2, .div a b a b a bε ε⎡ ⎤− < + ×⎣ ⎦O  
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Using the newly implemented single-precision division operator and the algorithm  
of division of single-singles presented above, we have implemented the function 
div_ds_ds_4 which calculates four single-single divisions at the same time, at a cost 
of 111 clock cycles. 

5.6 Optimised algorithms 

The versions 2 of the single-single operators performs four operations at the same time, 
and they have taken full advantage of the SIMD processor which provides an important 
performance of calculation. By using the spu_timing tool of IBM, we recognised that 
there still left many non-used clock cycles in the process of calculation of each operator. 

We can use these non-used clock cycles by increasing the number of operations 
executed at the same time. 

With the restricted local storage (only 256 KB for both the code and data), we choose 
to implement operations on EIGHT single-singles. This third version is considered as the 
optimal version in our library. The third version of the sum, the product and the division 
are named add_ds_ds_8, mul_ds_ds_8, div_ds_ds_8 and cost respectively  
72 cycles, 63 cycles, and 125 cycles for eight single-singles. In comparison with the 
version 2 with only some supplementary clock cycles (for example eight cycles for the 
sum and three cycles for the product) we can execute eight single-single operations 
instead of four. It means that we have achieved a coarse gain with the final version in 
terms of performance. 

Almost every clock cycle being used, there would be no gain from dealing with 
sixteen single-singles. 

5.7 Theoretical results 

On a Cell processor with a frequency of 3.2 GHz, its theoretical performances (without 
memory access problems) of the single-single are presented in Table 2. 
Table 2 Theoretical results of the single-single library 

Function Number of operations Execution time Performance 
add_ds_ds_2 2 50 cycles 0.128 GFLOPs 
add_ds_ds_4 4 64 cycles 0.2 GFLOPs 
add_ds_ds_8 8 72 cycles 0.355 GFLOPs 
mul_ds_ds_2 2 49 cycles 0.130 GFLOPs 
mul_ds_ds_4 4 60 cycles 0.213 GFLOPs 
mul_ds_ds_8 8 63 cycles 0.406 GFLOPs 
div_ds_ds_4 4 111 cycles 0.115 GFLOPs 
div_ds_ds_8 8 125 cycles 0.2048 GFLOPs 
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6 Numerical simulations 

6.1 Experimental results 

To test the performance of the single-single library, we created a program which 
performs the basic operators on two large vectors of single-single and also on two large 
double precision vectors of the same size. To achieve the peak performance of the 
library, we use the third version of each operator. Double-buffering is used to hide data 
transfer time. 

This program is executed on a IBM Cell Blade based at CINES, Montpellier, France. 
The CPU frequency is 3.2 GHz. The results obtained are listed in the Table 3. 
Table 3 Real performances of the library single-single 

Functions Theoretical performance Experimental performance 
Add_ds_ds_8 355 MFLOPs 250.4 MFLOPs 
mul_ds_ds_8 406 MFLOPs 287.2 MFLOPs 
div_ds_ds_8 204 MFLOPs 166.4 MFLOPs 

Figure 10 illustrates the performance of the addition on single-singles and on native 
double precision. Both have the same memory size. They are very close. 

Figure 10 The performance of the library single-single: Addition (see online version for colours) 

 

It is interesting to note that a performance limit is reached. The main limit for the 
performance is the memory access. The memory bandwidth on the Cell processor is 
equal to 25.6 GBytes/s, which corresponds to 6.4 GWords/s4. Each operation is 
performed on double words variables (single-single or double). That means that the 
bandwidth corresponds to a traffic of 3.2 G operands. For vector operations, there are two 
memory access to read the data and one memory access to write the data, so there are 
only 1.07 G operations. This explanation clearly shows that the peak performance is not 
reachable on large vectors operations due to the bandwidth limit. 
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The maximum performance with 64-bit floating point is not reached. In this case, the 
program measures mainly the memory transfer time. The native double operations are 
completely hidden. For the single-singles, the computing time of one operation is on the 
same order as the transfer memory necessary for one operation. 

To have another comparison, another program is created which executes a large 
number of basic operators on a small number of data generated within the SPE without 
any data transfer. The execution time of the program is exactly the time of calculation. 
The results are presented in Table 4. The peak performance for the multiplication on the 
Cell processor is achieved for native double precision. 
Table 4 Performance of the single-single library and of the double precision of the machine, 

without data transfer 

Functions 
Theoretical 

performance (1 SPE) 
Experimental 

performance (1 SPE) 
Experimental 

performance (8 SPEs) 
add_ds_ds_8 355 MFLOPs 266 MFLOPs 2133 MFLOPs 
mul_ds_ds_8 406 MFLOPs 320 MFLOPs 2560 MFLOPs 
div_ds_ds_8 204 MFLOPs 172 MFLOPs 1383 MFLOPs 
sum in double precision 914 MFLOPs 914 MFLOPs 7314 MFLOPs 
product in double 
precision 

914 MFLOPs 914 MFLOPs 7314 MFLOPs 

division in double 
precision 

(not supported) 86 MFLOPs 691 MFLOPs 

With the single-singles numbers, it is not possible to achieve the same performance as 
with the native double precision. This is mainly due to two factors: 

• the cost of the function call 

• the transfer from the local memory to the registers. 

6.2 Exactness 

Let a = (ah, al) be a single-single. Following the definition of a single-single, ah and al 
have the same sign, and that |al| < ulp(ah) which leads to a relation between their 
exponents: EXP(ah) ≥ EXP(al) + 24. Here, EXP( ) denotes the exponent of a floating 
point number. Since the range of exponent for single precision floating point numbers is 
from −126 to 127, there will be 8515 possible pairs of exponents for a single-single. 

Moreover, for each pair of exponents, there are two possible signs and 223 * 223 
possible pairs of mantissas. Hence, it is really difficult to test thoroughly the exactness of 
the library. 

To get an acceptable test, and to cover numerical phenomenons, such as overflow, 
underflow, and cancellation, we go through all possible pairs of exponents. For each 
exponent, we take only 16 values of the mantissa: four minimum values, four maximum 
values and eight medium values. Each pair of exponents will be tested for both two signs. 

Calculation results of single-singles will be tested against calculation results of native 
double of the Cell processor. 
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Let a = (ah, al) and b = (bh, bl) be two single-singles. Let c = (ch, cl) be the result of 
the calculation (addition, product or division) over a and b. The corresponding reference 
double result rd is calculated by: 

1 Addition: rd = ((double)ah + (double)bh) + ((double)al + (double)bl) 

2 Product: rd = ((double)ah*(double)bh + ((double)ah*(double)bi  
+ ((double)ai*(double)bh + ((double)al * (double)bl)))), 

3 Division: rd = ((double)ah + (double)bh)/((double)al + (double)bl). 

The absolute error and relative error are calculated by: 

( ) ( ) ,
_ / .

h ldiff double c double c rd
rel diff diff rd

= + −

=
 

A calculation result greater than or equal to 2128 will be considered as overflow and will 
be ignored. Furthermore, the test program behaves like following: 

1 Addition: if rel_diff < 6 ∗ 2–46 then the result is considered to be exact and  
returned value is the absolute value of the relative error rel_diff. Else, we calculate 
rel_diff2 = diff/(al + bl) and compare this value to 2–23. If rel_diff2 < 223 than the 
result is normal too, and the returned value is rel_diff2. Finally, if these two 
conditions do not hold, than the result is abnormal and the returned value is the 
absolute error diff. 

2 Product: if rel_diff < 2−43 then the result is considered to be exact and returned value 
is the absolute value of the relative error rel_ diff. If not, the result is considered as 
abnormal and returned value is the absolute value of absolute error diff. 

3 Division: if rel_diff < 2−42 then the result is considered to be exact and returned 
value is the absolute value of the relative error rel_ diff. If not, the result is 
considered as abnormal and returned value is the absolute value of absolute  
error diff. 

The three versions of each operation (addition, product and division) give the same 
results, which are summarised in Table 5. 
Table 5 The exactness of single-single library 

Operation Max relative error Max absolute error Max diff/(al + bl) 
Sum 8.603330e-14 1.175494e-38 1.249775e-07 
Product 1.145182e-13 3.526483e-38 – 
Division 2.138291e-13 1.689773e-38 – 

As Table 5 reveals, the maximum absolute errors of non exact results of both three 
operations are of order 10−38, which can be considered as errors incurred by underflow 
phenomenon. 

These results allow us to state that, except for overflow and underflow exceptions, 
our library provides correct answers which are accurate to 42 bits with faithful rounding 
mode. 
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7 Conclusions and perspectives 

This paper is based mostly on work of Hida et al. (2001) with some adaptations to the 
rounding mode toward zero and to the implementation environment of the Cell processor. 
First we propose an algorithm for the error-free transformation of the sum which is 
proved to be implemented effectively on the Cell processor. Then, we introduce method 
to develop the extended precision of single-single with basic operators sum, product and 
division. A large part of this paper is dedicated to the implementation of this library  
in exploiting the specific characteristics of the Cell processor, among which the most 
important are the truncation rounding, the SIMD processor and the fully pipelined 
instruction set. The performance and the precision of the implemented library are tested 
by running test programs on a real Cell processor with a frequency of 3.2 GHz. 

In the future, this library could be completed by the treatment of numeric exceptions, 
by the binary operations, algebraic operations and transcendental operations. 

Anticipating for the next Cell generation, we are developing the quad-single precision 
library. With the next generation of the Cell processor, we will be able to get easily: 

• the quad precision implemented with double-double numbers with the methods of 
the single-single library, and 

• the quad-double precision implemented with four double numbers with the methods 
of the quad-single library. 
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Notes 
1 http://crd.lbl.gov/~dhbailey/dhbtalks/dhb-pelz.pdf 
2 On the SPE, there are two pipelines. The first one is devoted to numerical operations, the 

second one is for control and logical operations. The two pipelines can be used in parallel. 
3 The SIMD unit computes on 128-bit vectors. The four single-singles values of a and b are cut 

into two parts to keep the register organisation. 
4 One word is equal to four bytes. In our case, one word is a single floating point number. 


