

 Int. J. Reliability and Safety, Vol. 3, Nos. 1/2/3, 2009 153

 Copyright © 2009 Inderscience Enterprises Ltd.

Extended precision with a rounding mode toward
zero environment. Application to the Cell processor

Hong Diep Nguyen, Stef Graillat and
Jean-Luc Lamotte*
CNRS, UMR 7606, LIP6,
Université Pierre et Marie Curie,
4 place Jussieu,
F-75252, Paris cedex 05, France
Email: hong.diep.nguyen@ens-lyon.fr
Email: stef.graillat@lip6.fr
Email: Jean-Luc.Lamotte@lip6.fr
*Corresponding author

Abstract: In the field of scientific computing, the exactness of the calculation
is of prime importance. That leads to efforts made to increase the precision of
the floating point algorithms. One of them is to increase the precision of the
floating point number to double or quadruple the working precision. The
building block of these efforts is the Error-Free Transformations (EFT). In this
paper, we develop EFT operations in truncation rounding mode optimised for
the Cell processor. They have been implemented and used in double precision
library using only single precision numbers. We compare the performance
of our library with the native one in double precision on vectors operations. In
the best case, the performance of our library is very closed to the standard
double precision implementation. The work could be easily extended to obtain
quadruple precision.

Keywords: extended precision; rounding mode toward zero; Cell processor.

Reference to this paper should be made as follows: Nguyen, H.D., Graillat, S.
and Lamotte, J-L. (2009) ‘Extended precision with a rounding mode
toward zero environment. Application to the Cell processor’, Int. J. Reliability
and Safety, Vol. 3, Nos. 1/2/3, pp.153–173.

Biographical notes: Hong Diep Nguyen is pursuing his PhD at the Ecole
Normale Superieure de Lyon. He received his Master’s degree in Computer
Science from Université Pierre et Marie Curie in September 2007. His main
research interests are reliable computing and computer arithmetic.

Stef Graillat received his PhD in Computer Science from Université de
Perpignan, France, in 2005. He has been an Associate Professor of Computer
Science at the Laboratory LIP6 of Université Pierre et Marie Curie since
September 2006. His research interests are computer arithmetic and reliable
computing.

Jean-Luc Lamotte received his PhD in Computer Science from Université de
Caen, France, in 1992. He was appointed Associate Professor in 1995 in the
Computer Science Laboratory (LIP6) of the Université Pierre et Marie Curie,
and Professor in 2006. His research interests are reliable computing and
new architectures for numerical computing.

 154 H.D. Nguyen, S. Graillat and J-L. Lamotte

1 Introduction

The Cell processor, developed jointly by Sony, Toshiba, and IBM, provides a great
power of calculation with a peak performance in single precision of 204.8 Gflop/s.
This performance is obtained with a set of SIMD processors which use single precision
floating point numbers with rounding mode toward zero.

Most scientific computation utilises floating point arithmetic. For a growing number
of computations, much higher precision is needed, especially for applications which carry
out very complicated and enormous tasks in scientific fields, for example1:

• Quantum field theory

• Supernova simulation

• Semiconductor physics

• Planetary orbit calculations

• Experimental and computational mathematics, etc.

Even if other techniques, methods or algorithms are employed to increase the accuracy
of numerical results, some extended precision is still required to avoid severe numerical
inaccuracies.

In this paper, we will study how to implement the double working precision library
named single-single on the SPEs (Synergistic Processing Elements), which are the
workhorse processors of the Cell. Our approach is similar to those used by Hida et al.
(2001) for the quad-double precision arithmetic in the rounding mode to the nearest.
The next Cell generation will provide powerful computing power in double precision
with a rounding toward zero. Our library will be easily fit into double-double library
which will emulate the quad precision.

This paper begins with a brief introduction to the Cell processor. Then we propose
algorithms for the operators (+, −, ×, /) of extended precision based on the error-free
transformations for the rounding mode toward zero. The next section is devoted to the
implementation of the single-single library on the SPE by taking into account the
advantages of the SIMD characteristics, among which the most important are the fully
pipelined single precision instructions set and the FMA (Fused Multiply-Add). Finally,
the numerical experiments and the test results showing the library performance are
presented. The code of the library is available at http://pequan.lip6.fr/~lamotte/software/
extendedprecision/.

2 Introduction to the Cell processor

The Cell processor (Kahle et al., 2005; Williams et al., 2006) is composed of one ‘Power
Processor Element’ (PPE) and eight ‘Synergistic Processing Elements’ (SPEs). The PPE
and SPEs are linked together by an internal high-speed bus called ‘Element Interconnect
Bus’ (EIB) (see Figure 1).

The PPE is based on the Power Architecture. Despite its important computing power,
in practical use, it only serves as a controller for the eight SPEs, which perform most of
the computational workload.

 Extended precision with a rounding mode toward zero environment 155

Figure 1 Cell processor architecture (taken from IBM website) (see online version for colours)

The SPE is composed of a ‘Synergistic Processing Unit’ (SPU) and a ‘Memory
Flow Controller’ (MFC), which is devoted to memory transfer via the DMA access.
The SPE contains an SIMD processor for single and double precision (Jacobi et al., 2005;
Gschwind et al., 2006), which can perform four simultaneous operations in single
precision or two operations in double precision. It supports all the four rounding
modes for the double precision and only the rounding mode toward zero for the single
precision.

The instruction set in single precision of the SPE is fully pipelined; one instruction
can be issued for each clock cycle. It is based on the FMA function, which calculates the
term a b c∗ + in one operation and one rounding. With a frequency of 3.2 GHz, each
SPE can achieve the performance of 2 × 4 × 3.2 = 25.6 GFLOPs on single precision
numbers.

For the double precision, the instruction set is not fully pipelined. It is only possible
to issue one instruction for each seven cycles, so the peak performance of each SPE for
the double precision is 2 × 2 × 3.2/7 = 1.8 GFLOPs.

Each SPE has a ‘Local Storage’ (LS) of 256 KB for both data and code. In the
opposite of the cache memory management, there is no mechanism to load data in
the LS. It is up to the programmer to explicitly transfer data via DMA function calls.
The SPE have a large set of registers (128 128-bit registers) which can be used directly
by the program, avoiding the load-and-store time.

 156 H.D. Nguyen, S. Graillat and J-L. Lamotte

3 Floating-point arithmetic and extended precision

In this section, we briefly introduce the floating point arithmetic and the method to
extend the precision. In this paper, due to the specific environment of the Cell processor,
we work only with the rounding mode toward zero.

In a computer, the set of floating point numbers denoted F is used to represent real
numbers. A binary floating point number is represented as

1 1()1. ... 2 , {0,1},e
p i

mantissa

x x x x−= ± × ∈

with p the precision and e the exponent of x. We use 12 pε −= as the machine precision,
and the value corresponding to the last bit of x is called unit in the last place, denoted
ulp(x), and 1() 2e pulp x − += .

In the case of the Cell’s single precision, p = 24 and ε = 2–23. These values are similar
to the IEEE 754 single precision format (IEEE, 1985). These values will be used
throughout this paper.

Let x and y be two floating point numbers and let be a floating point operation
{ }()+, , , /∈ − × . It is clear that (x y) is a real number, but in most cases it is not

representable by a floating point number. Let fl(x y) be the representative floating
point number of (x y) obtained by a rounding. The difference (x y) − fl(x y)
corresponds to the rounding error denoted err(x y).

Given a specific machine precision, the precision of calculation can be increased by
software. Instead of using a floating point number, multiple floating point numbers can
be used to represent multiple parts of a real number. This is the idea of the extended
precision. In our case, a single-single is defined as follows:

Definition 1: A single-single is a non-evaluated sum of two single precision floating
point numbers. The single-single represents the exact sum of these two floating point
numbers:

a = ah + al.

There may be multiple couples of two floating point numbers whose sums are equal.
To ensure a unique representation, ah and al should have the same sign and should satisfy

|al| < ulp(ah). (1)

To implement the extended precision, we have to calculate the error produced by single
precision operations using the error-free transformations presented below.

3.1 The error-free transformations (EFT)

Let x and y be two floating point numbers and be a floating point operation. The
error-free transformations are intended to calculate the rounding error incurred by
this operation. The EFTs transform (x y) into a couple of two floating point numbers
(r, e) so that

r ≈ x y and r + e = x y .

 Extended precision with a rounding mode toward zero environment 157

3.1.1 Accurate sum

There are two main algorithms for the accurate sum of two floating point numbers.
For example, for the rounding mode to nearest, there is the algorithm proposed by Knuth
(1998), which uses six standard operations, or the algorithm proposed by Dekker (1971),
which uses only three standard operations, but with the assumption on the order between
the absolute values of two input numbers.

In this paper, we focus only on the rounding mode toward zero, so, it is necessary to
adapt these algorithms. Priest (1992) has proposed an algorithm for an accurate sum
using a rounding mode toward zero. To better use the pipelines, we proposed another
algorithm.

Algorithm 2: Error-free transformation for the sum with rounding toward zero.

Two−Sum−toward−zero2 (a, b)
if (|a| < |b|)

swap (a , b)
s = fl (a + b)
d = fl(s − a)
e = fl (b − d)

if (|2 ∗ b| < |d|)
s = a, e = b

return (s, e)

The exactness of the proposed algorithm is provided in the following theorem:

Theorem 3: Let a and b be two floating point numbers. The result
(s, e) = Two-Sum-toward-zero2(a, b) satisfies:

,
().

s e a b
e ulp s

+ = +

<

The proof of all the theorems of this paper can be found in Nguyen (2007) (in French).

3.1.2 Accurate product
The calculation of the error-free transformation for the product is much more
complicated than the sum (Dekker, 1971), but if the processor has a FMA (Fused
Multiply-Add) which calculates the term a b c∗ + in one operation, the classic algorithm
for the product can be used.

Algorithm 4: The error-free transformation for the product of two floating point
numbers.

Two−Product−FMA (a, b)

p = fl (a ∗ b)
e = fma (a, b,−p)
return (p, e)

This algorithm is applicable for all the four rounding modes. The basic operation on the
SIMD unit of the SPE being a FMA, our library implements this algorithm.

 158 H.D. Nguyen, S. Graillat and J-L. Lamotte

4 Basic operations of single-single

4.1 Renormalisation

Using the rounding toward zero EFTs, we can implement the basic operations for the
single-single. Most of the algorithms described hereafter often produce an intermediate
result of two overlapping floating point numbers. To respect the definition of the
normalisation (1), it is necessary to apply a renormalisation step to transform these two
floating point numbers into a normalised single-single. The following function is
proposed:

1 Renormalise2−toward−zero (a,b)

2 if (|a| < |b|)

3 swap(a,b)

4 s = fl (a + b)

5 d = fl (s − a)

6 e = fl(b − d)

7 return (s, e)

Renormalisation is the same for the rounding mode toward zero and to the nearest, but
in the case of the rounding mode toward zero, it is not possible to give an exact result.
The following theorem provides an error bound for this algorithm.

Theorem 5: Let a and b be two floating point numbers. The result returned by
Renormalise2-toward-zero is a pair of two floating point numbers (s, e) which
satisfies

• s and e have the same sign, and |e| < ulp(s), and

• a + b = s + e + δ, where δ is error of normalisation, and 21
2| | | | .a bδ ≤ × × +ε

As we will see later, this error is much smaller than the errors produced by the following
algorithms. To describe them, we use the notations in Figure 2.

Figure 2 Notations

 Extended precision with a rounding mode toward zero environment 159

4.1.1 Addition

Figure 3 represents the algorithm for the addition of two single-singles a and b. The
source code follows:

1 add_ds_ds (ah, al, bh, bl)

2 (th, tl) = Two−Sum−toward−zero (ah, bh)

3 tll = fl (al + bl)

4 tl = fl(tl + tll)

5 (rh, rl) = Renormalise2−toward−zero (th, tl)

6 return (rh, rl)

Figure 3 Algorithm for the addition of two single-singles

With two sums, a Two-Sum-toward-zero and a Renormalise2-toward-zero,
the cost of the add_ds_ds algorithm is 11 FLOPs. The following theorem provides
an error bound for this algorithm.

Theorem 6: Let ah + al and bh + bl be two input single-singles and rh + rl be the result of
add_ds_ds. The error δ produced by this algorithm satisfies

2

() () ,

| | (| |, 6 | | .
h l h l h l

l l h l h l

r r a a b b

max a b a a b b

+ = + + + +

< × + × × + + +

δ

δ ε ε

4.1.2 The subtraction

The subtraction of two single-singles a − b is implemented by a sum a + (−b).
To compute the opposite of a single-single, it is just necessary to get the opposite of the
floating point components. Therefore, the algorithms for the addition and the subtraction
are similar.

 160 H.D. Nguyen, S. Graillat and J-L. Lamotte

4.1.3 Product

The product of two single-singles a and b can be considered as the product of two sums
ah + al and bh + bl so the exact product has four components:

() ()
.

h l h l

h h l h h l l l

p a a b b
a b a b a b a b

= + × +

= × + × + × + ×

Considering ah × bh as a term of order (1)O , this product consists of one term (1)O ,
two terms (2)O , and one term (3)O . To decrease the complexity of the algorithm, the
terms of order below (2)O will not be taken into account. Additionally, using the EFT
for the product, ah × bh can be transformed exactly into two floating point numbers of
orders (1)O and (2),O respectively. Hence, the product of two single-singles can be
approximated by:

(1) (2)

() (()).h h h l l h h lp fl a b err a b a b a b≈ × + × + × + ×
O O

This approximation can be translated into the following algorithm described in Figure 4.

1 mul_ds_ds (ah, al, bh, bl)

2 (th, tl) = Two−Product−FMA (ah, bh)

3 tll = fl (al ∗ bh)

4 tll = fl (ah ∗ bl + tll)

5 tl = fl (tl + tll)

6 (rh, rl) = Renormalise2−toward−zero (th, tl)

7 return (rh, rl)

Figure 4 Algorithm for the product of two single-singles

The error bound of the algorithm mul_ds_ds is provided by the following theorem.

 Extended precision with a rounding mode toward zero environment 161

Theorem 7: Let ah + al and bh + bl be two single-singles. Let rh + rl be the result
returned by the algorithm mul_ds_ds applying to ah + al and bh + bl. The error δ of
this algorithm satisfies

2| () () () | 8 | () () | .h l h l h l h l h lr r a a b b a a b b+ − + × + < × × + × +ε

4.1.4 The division

The division of two single-singles is calculated by the classic division algorithm.
Let a = (ah, al) and b = (bh, bl) be two single-singles. To calculate the division of a by

b, we calculate the approximate quotient, qh = ah/bh.
Then we calculate the residual r = a – qh × b, which allows us to calculate the

correction term ql = r/bh.

1 div_ds_ds (a, b)

2 qh = fl(ah / bh)

3 tmp1 = fl (ah − qh ∗ bh)

4 tmp2 = fl (al − qh ∗ bl)

5 r = fl (tmp1 + tmp2)

6 ql = fl(r / bh)

7 (qh,ql) = Renormalise2−toward−zero (qh , ql)

8 return (qh, ql)

The following theorem provides an error estimate for this algorithm.

Theorem 8: Let a = (ah, al) and b = (bh, bl) be two single-singles, ε the machine
precision and ε1 the error bound for the single precision division with 1() = ()ε εO O .
The error of the algorithm div_ds_ds is bounded by:

()) ()() ())22 3
1 1_ _ , 6.5 7 2 .div ds ds a b a b a bε ε ε ε ε ε⎡ ⎤− < × + × + × + ×

⎣ ⎦
O

In most of cases we have ε1 = ε. In this case, the error bound of this algorithm is:

()2 315.5 .q a b a bε ε⎡ ⎤− < × + ×⎣ ⎦O

This inequality means that our division algorithm of two single-singles is accurate to
42 bits on a maximum of 48 bits. The accuracy of this algorithm can be increased
by calculating another correction term q2, but doing so has a great impact on the
performance. The execution time over-cost cost more than twice because of two factors:

• the calculation of (ah + al) − (bh + bl) × (qh + ql), which is one single-single
multiplication and one single-single subtraction, and

• the renormalisation of three floating point numbers, which requires two accurate
sums and one renormalisation of two floating point numbers (Nguyen, 2007).

 162 H.D. Nguyen, S. Graillat and J-L. Lamotte

5 Implementation

The SPE (Synergistic Processor Element) of the Cell processor contains a 32-bit 4-way
SIMD processor together with a large set of 128 128-bit registers. It can perform
the operations on the vectors of 16 char/unsigned char, 4 int/unsigned
int, 4 float, or 2 double.

The operations on scalars are implemented by using the vector operations. In this
case, only one operation is performed on the preferred slot instead of 4 on vectors.
For this reason, we implement only the vector operations for the single-singles.

Table 1 lists some Cell-specific instructions used in the sequel to write algorithms.
As we work with vectors, the operations are performed componentwise.
Table 1 Cell-specific instructions

Instruction Explanation
d = spu_add(a, b) d = a + b.
d = spu_sub(a, b) d = a − b.
d = spu_mul(a, b) d = a × b.
d = spu_madd(a, b, c) d = a × b + c.
d = spu_msub(a, b, c) d = a × b − c.
d = spu_nmsub(a, b, c) d = −(a × b − c).
d = spu_nmadd(a, b, c) d = −(a × b + c).
d = spu_re(a) For each element of vector a, an estimate of its floating-point

reciprocal is computed. The resulting estimate is accurate to
12 bits.

d = spu_cmpabsgt(a, b) The absolute value of each element of vector a is compared
with the absolute value of the corresponding element of vector b.
If the element of a is greater than the element of b, all bits of
the corresponding element of vector d are set to one; otherwise,
all bits of the corresponding element of d are set to zero.

d = spu_sel(a, b, pattern) For each bit in the 128-bit vector pattern, the corresponding bit
from either vector a or vector b is selected. If the bit is 0, the bit
from a is selected; otherwise, the bit from b is selected. The result
is returned in vector d.

5.1 Representation

A single-single is a pair of two floating point numbers so each vector of 128 bits contains
two single-singles (Figure 5). Hence, the 128-bit register containing two single-single
numbers could be seen as a vector of four floating point numbers.

Figure 5 A vector of 2 single-singles (see online version for colours)

 Extended precision with a rounding mode toward zero environment 163

5.2 Implementation of the error-free transformations

The EFT for the product is implemented simply by two instructions:

1 Two−Prod−FMA (a,b)

2 p = spu_mul(a,b)

3 e = spu_msub(a, b, p)

4 return (p,e)

The algorithm of the EFT for the sum begins with a test and a swap. This test limits the
possibility of parallelism. Hence, we first have to eliminate this test by the following
procedure:

• evaluation of the condition. The result is a vector comp of type unsigned int, in
which a value of zero means the condition holds, and a value of FFFFFFFF means
opposite

• computation of the values of the two branches val_1 (if the condition is satisfied)
and val_2 (if not)

• selection of the correct value according to the vector of condition by using the bit
selection function:

_ (_ 2, _1,).d spu sel val val comp=

For each bit in the 128-bit vector comp, the corresponding bit from either vector val2 or
val1 is selected. If the bit is 0, the bit from val2 is selected; otherwise, the bit from val1 is
selected. The result is returned in vector d.

For example, the test and the swap can be coded as follows:

1 comp = spu_cmpabsgt (b, a)

2 hi = spu_sel(a, b, comp)

3 lo = spu_sel(b, a, comp)

Figure 6 gives a concrete example of this exchange.

Figure 6 Example of the exchange of two vectors

 164 H.D. Nguyen, S. Graillat and J-L. Lamotte

The spu_cmpabsgt and spu_sel instructions cost two clock cycles each. Moreover,
since the instructions of lines 2 and 3 of this code are independent, they can be pipelined.
Hence, these three instructions cost only five clock cycles, which is less than a single
precision operation (six clock cycles for the FMA).

Applying the same procedure for the last conditional test of the algorithm
Two-Sum-toward-zero2, this algorithm can be rewritten as follows:

1 Two−Sum−toward−zero2 (a,b)

2 comp = spu_cmpabsgt (b, a)

3 hi = spu_sel(a, b, comp)

4 lo = spu_sel(b, a, comp)

5 s = spu_add(a , b)

6 d = spu_sub(s, hi)

7 e = spu_sub(lo, d)

8 tmp = spu_mul(2, lo)

9 comp = spu_cmpabsgt (d, tmp)

10 s = spu_sel(s, hi, comp)

11 e = spu_sel(e, lo, comp)

12 return (s, e)

Note that the addition of a and b does not change after the exchange. Hence, we choose
to use a + b instead of hi + lo to avoid the instruction dependencies. More precisely,
the three first instructions for the test and the exchange are independent of the instruction
of line 5 which costs six cycles, so, they can be executed in parallel2. Figure 7
emphasises the full independencies of instructions. This algorithm costs 20 clock cycles,
which is a little bit more than the execution time of three sequential single precision
operations.

Figure 7 The dependencies between instructions of algorithm Two-Sum-toward-zero
(see online version for colours)

 Extended precision with a rounding mode toward zero environment 165

5.3 Renormalisation

The implementation of algorithm Renormalise2-toward-zero is similar to the
Two-Sum-toward-zero2 algorithm but without the conditional test and the
exchange at the end.

1 Renormalise2−toward−zero (a,b)

2 s = spu_add(a, b)

3 comp = spu_cmpabsgt (b, a)

4 hi = spu_sel(a, b, comp)

5 Lo = spu_sel(b, a, comp)

6 d = spu_sub(s, hi)

7 e = spu_sub(lo, d)

8 return (s, e)

With the same analysis as Two-Sum-toward-zero2, Renormalise2-toward-
zero costs only 18 clock cycles. Now we will use these two functions to implement the
arithmetic operators of single-singles.

5.4 Version 1

The natural version of single-single operations computes one operation on TWO
single-singles. The SIMD processor allows us to manipulate simultaneously four 32-bit
floating point numbers at the same time. When applying to vectors of single-singles, we
can manipulate both the high and low components of these single-singles.

Using the Two-Sum-toward-zero2 presented above, we calculate the sums
and the rounding errors of two pairs of high components and also of two pairs of low
components in the same time. The rounding errors of these two pairs of low components
is computed, but not used by the algorithm.

Moreover, in the algorithms, it is necessary to compute operations between high
and low components. This requires some extra operations to shuffle those components.
Hence, the first version does not take full advantage of the SIMD processor. We have
implemented the first version for the sum and the product of single-singles which
are add_ds_ds_2, mul_ds_ds_2 for two single-singles and cost 50 cycles and
49 cycles, respectively.

As we will see later in Section 6, these first versions as well as the versions presented
below compute correct results except for overflow and underflow cases.

5.5 Version 2

The second version computes one operation on FOUR single-singles. It separates the
high and the low components into two separate vectors (see Figure 8) by using the
function spu_shuffle of SPE which costs four clock cycles. This solution makes
possible a better optimisation of the pipelined instructions.

Then, the operators can be implemented by applying directly the algorithms
presented above on four operands separated into four vectors.

 166 H.D. Nguyen, S. Graillat and J-L. Lamotte

Figure 8 Merging of two vectors (see online version for colours)

The intermediate result of these algorithms is also a pair of vectors which contain
respectively the four high parts and the four low parts of the result. At the end of the
algorithm, the result vectors should be built by shuffling the high and the low
components.

For example, version 2 for the sum of single-singles is3

1 add_ds_ds_4 (vect_a1, vect_a2, vect_b1, vect_b2)

2 a_hi = spu_shuffle (vect_a1, vect_a2, _merge1_vect_)

3 a_lo = spu_shuffle (vect_a1, vect_a2, _merge2_vect_)

4 b_hi = spu_shuffle (vect_b1, vect_b2, _merge1_vect_)

5 b_lo = spu_shuffle (vect_b1, vect_b2, _merge2_vect_)

6 (s, e) = Two−Sum−toward−zero (a_hi, b_hi)

7 t1 = spu_add(a_lo, b_lo)

8 tmp = spu_add(t1, e)

9 (hi, lo) = Renormalise2−toward−zero (s , tmp)

10 vect_c1 = spu_shuffle (hi, lo, _merge1_vect_)

11 vect_c2 = spu_shuffle (hi, lo, _merge2_vect_)

12 return (vect_c1, vect_c2)

Figure 9 shows the dependencies between instructions of this function. By using the tool
spu_timing of IBM, the execution time of this function is 64 clock cycles for four
single-singles.

It is the same for the product of single-singles. We have successfully implemented
version 2 of the product of single-singles, called mul_ds_ds_4, with an execution time
of 60 clock cycles for four single-singles. Although the first versions of the addition and
the product are nearly equal (50 and 49 clock cycles, respectively), the product takes
less operations than the addition so there are more idle clock cycles in the product
implementation. Hence, when implementing the second version, we can save more clock
cycles with the product operator.

 Extended precision with a rounding mode toward zero environment 167

Figure 9 The dependencies between instructions of add_ds_ds_4 (see online version
for colours)

The implementation of the division is more complicated. As described in the previous
section, the division of single-singles div_ds_ds is based on the division in single
precision, although the Cell processor does not support this kind of operation. It provides
only a function to estimate the inverse of a floating point number called spu_re, which
allows us to obtain a result precise up to 12 bits. Hence, to implement the division of
single-singles, we first have to implement division in single precision.

The procedure to calculate the division of two 32-bit floating point numbers a and b
is as follows:

1 calculate the inverse of b, and

2 multiply the inverse of b with a.

To improve the precision of the inversion, we use the iterative Newton’s method,
1 (1)i i i iinv inv inv inv b+ = + × − × . We also use Newton’s method for the multiplication,

with a × inverse(b) being the initial value. The division in single precision can be written as

1 div (a, b)

2 tmp0 = spu_re(b)

3 rerr = spu_nmsub(tmp0, b, 1)

4 inv = spu_madd(rerr, tmp0, tmp0)

5 Rerr = spu_nmsub(inv, b, 1)

6 eerr = spu_mul(rerr, inv)

7 tmp = spu_mul(eerr, a)

8 q = spu_madd(a, inv, tmp)

9 return q

The precision of the algorithm div is provided by the following theorem.

Theorem 9: Let a and b be two floating point numbers in single precision, ε being the
machine precision. The relative error of the algorithm div is bounded by

() ()2, .div a b a b a bε ε⎡ ⎤− < + ×⎣ ⎦O

 168 H.D. Nguyen, S. Graillat and J-L. Lamotte

Using the newly implemented single-precision division operator and the algorithm
of division of single-singles presented above, we have implemented the function
div_ds_ds_4 which calculates four single-single divisions at the same time, at a cost
of 111 clock cycles.

5.6 Optimised algorithms

The versions 2 of the single-single operators performs four operations at the same time,
and they have taken full advantage of the SIMD processor which provides an important
performance of calculation. By using the spu_timing tool of IBM, we recognised that
there still left many non-used clock cycles in the process of calculation of each operator.

We can use these non-used clock cycles by increasing the number of operations
executed at the same time.

With the restricted local storage (only 256 KB for both the code and data), we choose
to implement operations on EIGHT single-singles. This third version is considered as the
optimal version in our library. The third version of the sum, the product and the division
are named add_ds_ds_8, mul_ds_ds_8, div_ds_ds_8 and cost respectively
72 cycles, 63 cycles, and 125 cycles for eight single-singles. In comparison with the
version 2 with only some supplementary clock cycles (for example eight cycles for the
sum and three cycles for the product) we can execute eight single-single operations
instead of four. It means that we have achieved a coarse gain with the final version in
terms of performance.

Almost every clock cycle being used, there would be no gain from dealing with
sixteen single-singles.

5.7 Theoretical results

On a Cell processor with a frequency of 3.2 GHz, its theoretical performances (without
memory access problems) of the single-single are presented in Table 2.
Table 2 Theoretical results of the single-single library

Function Number of operations Execution time Performance
add_ds_ds_2 2 50 cycles 0.128 GFLOPs
add_ds_ds_4 4 64 cycles 0.2 GFLOPs
add_ds_ds_8 8 72 cycles 0.355 GFLOPs
mul_ds_ds_2 2 49 cycles 0.130 GFLOPs
mul_ds_ds_4 4 60 cycles 0.213 GFLOPs
mul_ds_ds_8 8 63 cycles 0.406 GFLOPs
div_ds_ds_4 4 111 cycles 0.115 GFLOPs
div_ds_ds_8 8 125 cycles 0.2048 GFLOPs

 Extended precision with a rounding mode toward zero environment 169

6 Numerical simulations

6.1 Experimental results

To test the performance of the single-single library, we created a program which
performs the basic operators on two large vectors of single-single and also on two large
double precision vectors of the same size. To achieve the peak performance of the
library, we use the third version of each operator. Double-buffering is used to hide data
transfer time.

This program is executed on a IBM Cell Blade based at CINES, Montpellier, France.
The CPU frequency is 3.2 GHz. The results obtained are listed in the Table 3.
Table 3 Real performances of the library single-single

Functions Theoretical performance Experimental performance
Add_ds_ds_8 355 MFLOPs 250.4 MFLOPs
mul_ds_ds_8 406 MFLOPs 287.2 MFLOPs
div_ds_ds_8 204 MFLOPs 166.4 MFLOPs

Figure 10 illustrates the performance of the addition on single-singles and on native
double precision. Both have the same memory size. They are very close.

Figure 10 The performance of the library single-single: Addition (see online version for colours)

It is interesting to note that a performance limit is reached. The main limit for the
performance is the memory access. The memory bandwidth on the Cell processor is
equal to 25.6 GBytes/s, which corresponds to 6.4 GWords/s4. Each operation is
performed on double words variables (single-single or double). That means that the
bandwidth corresponds to a traffic of 3.2 G operands. For vector operations, there are two
memory access to read the data and one memory access to write the data, so there are
only 1.07 G operations. This explanation clearly shows that the peak performance is not
reachable on large vectors operations due to the bandwidth limit.

 170 H.D. Nguyen, S. Graillat and J-L. Lamotte

The maximum performance with 64-bit floating point is not reached. In this case, the
program measures mainly the memory transfer time. The native double operations are
completely hidden. For the single-singles, the computing time of one operation is on the
same order as the transfer memory necessary for one operation.

To have another comparison, another program is created which executes a large
number of basic operators on a small number of data generated within the SPE without
any data transfer. The execution time of the program is exactly the time of calculation.
The results are presented in Table 4. The peak performance for the multiplication on the
Cell processor is achieved for native double precision.
Table 4 Performance of the single-single library and of the double precision of the machine,

without data transfer

Functions
Theoretical

performance (1 SPE)
Experimental

performance (1 SPE)
Experimental

performance (8 SPEs)
add_ds_ds_8 355 MFLOPs 266 MFLOPs 2133 MFLOPs
mul_ds_ds_8 406 MFLOPs 320 MFLOPs 2560 MFLOPs
div_ds_ds_8 204 MFLOPs 172 MFLOPs 1383 MFLOPs
sum in double precision 914 MFLOPs 914 MFLOPs 7314 MFLOPs
product in double
precision

914 MFLOPs 914 MFLOPs 7314 MFLOPs

division in double
precision

(not supported) 86 MFLOPs 691 MFLOPs

With the single-singles numbers, it is not possible to achieve the same performance as
with the native double precision. This is mainly due to two factors:

• the cost of the function call

• the transfer from the local memory to the registers.

6.2 Exactness

Let a = (ah, al) be a single-single. Following the definition of a single-single, ah and al
have the same sign, and that |al| < ulp(ah) which leads to a relation between their
exponents: EXP(ah) ≥ EXP(al) + 24. Here, EXP() denotes the exponent of a floating
point number. Since the range of exponent for single precision floating point numbers is
from −126 to 127, there will be 8515 possible pairs of exponents for a single-single.

Moreover, for each pair of exponents, there are two possible signs and 223 * 223
possible pairs of mantissas. Hence, it is really difficult to test thoroughly the exactness of
the library.

To get an acceptable test, and to cover numerical phenomenons, such as overflow,
underflow, and cancellation, we go through all possible pairs of exponents. For each
exponent, we take only 16 values of the mantissa: four minimum values, four maximum
values and eight medium values. Each pair of exponents will be tested for both two signs.

Calculation results of single-singles will be tested against calculation results of native
double of the Cell processor.

 Extended precision with a rounding mode toward zero environment 171

Let a = (ah, al) and b = (bh, bl) be two single-singles. Let c = (ch, cl) be the result of
the calculation (addition, product or division) over a and b. The corresponding reference
double result rd is calculated by:

1 Addition: rd = ((double)ah + (double)bh) + ((double)al + (double)bl)

2 Product: rd = ((double)ah*(double)bh + ((double)ah*(double)bi
+ ((double)ai*(double)bh + ((double)al * (double)bl)))),

3 Division: rd = ((double)ah + (double)bh)/((double)al + (double)bl).

The absolute error and relative error are calculated by:

() () ,
_ / .

h ldiff double c double c rd
rel diff diff rd

= + −

=

A calculation result greater than or equal to 2128 will be considered as overflow and will
be ignored. Furthermore, the test program behaves like following:

1 Addition: if rel_diff < 6 ∗ 2–46 then the result is considered to be exact and
returned value is the absolute value of the relative error rel_diff. Else, we calculate
rel_diff2 = diff/(al + bl) and compare this value to 2–23. If rel_diff2 < 223 than the
result is normal too, and the returned value is rel_diff2. Finally, if these two
conditions do not hold, than the result is abnormal and the returned value is the
absolute error diff.

2 Product: if rel_diff < 2−43 then the result is considered to be exact and returned value
is the absolute value of the relative error rel_ diff. If not, the result is considered as
abnormal and returned value is the absolute value of absolute error diff.

3 Division: if rel_diff < 2−42 then the result is considered to be exact and returned
value is the absolute value of the relative error rel_ diff. If not, the result is
considered as abnormal and returned value is the absolute value of absolute
error diff.

The three versions of each operation (addition, product and division) give the same
results, which are summarised in Table 5.
Table 5 The exactness of single-single library

Operation Max relative error Max absolute error Max diff/(al + bl)
Sum 8.603330e-14 1.175494e-38 1.249775e-07
Product 1.145182e-13 3.526483e-38 –
Division 2.138291e-13 1.689773e-38 –

As Table 5 reveals, the maximum absolute errors of non exact results of both three
operations are of order 10−38, which can be considered as errors incurred by underflow
phenomenon.

These results allow us to state that, except for overflow and underflow exceptions,
our library provides correct answers which are accurate to 42 bits with faithful rounding
mode.

 172 H.D. Nguyen, S. Graillat and J-L. Lamotte

7 Conclusions and perspectives

This paper is based mostly on work of Hida et al. (2001) with some adaptations to the
rounding mode toward zero and to the implementation environment of the Cell processor.
First we propose an algorithm for the error-free transformation of the sum which is
proved to be implemented effectively on the Cell processor. Then, we introduce method
to develop the extended precision of single-single with basic operators sum, product and
division. A large part of this paper is dedicated to the implementation of this library
in exploiting the specific characteristics of the Cell processor, among which the most
important are the truncation rounding, the SIMD processor and the fully pipelined
instruction set. The performance and the precision of the implemented library are tested
by running test programs on a real Cell processor with a frequency of 3.2 GHz.

In the future, this library could be completed by the treatment of numeric exceptions,
by the binary operations, algebraic operations and transcendental operations.

Anticipating for the next Cell generation, we are developing the quad-single precision
library. With the next generation of the Cell processor, we will be able to get easily:

• the quad precision implemented with double-double numbers with the methods of
the single-single library, and

• the quad-double precision implemented with four double numbers with the methods
of the quad-single library.

Acknowledgements

The authors are very grateful to the CINES (Centre Informatique National de
l’Enseignement Supérieur, Montpellier, France) for providing us access to their
Cell blades. Also, we wish to thank the referees for their careful work, in particular, for
their remark about exactness test, which led to great efforts to improve test results.

References
Dekker, T.J. (1971) ‘A floating-point technique for extending the available precision’,

Numerische Mathematik, Vol. 18, pp.224–242.
Gschwind, M., Hofstee, H.P., Flachs, B., Hopkins, M., Watanabe, Y. and Yamazaki, T. (2006)

‘Synergistic processing in Cell’s multicore architecture’, IEEE Micro, Vol. 26, No. 2,
pp.10–24.

Hida, Y., Li, X.S. and Bailey, D.H. (2001) ‘Algorithms for quad-double precision floating point
arithmetic’, Proceedings of 15th IEEE Symposium on Computer Arithmetic, IEEE Computer
Society Press, Los Alamitos, CA, USA, pp.155–162.

IEEE (1987) IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985,
Institute of Electrical and Electronics Engineers, New York, 1985, Reprinted in SIGPLAN
Notices, Vol. 22, No. 2, pp.9–25.

Jacobi, C., Oh, H-J., Tran, K.D., Cottier, S.R., Michael, B.W., Nishikawa, H., Totsuka, Y.,
Namatame, T. and Yano, N. (2005) ‘The vector floating point unit in a synergistic processor
element of a Cell processor’, ARITH '05: Proceedings of the 17th IEEE Symposium on
Computer Arithmetic, IEEE Computer Society, Washington, DC, USA, pp.59–67.

 Extended precision with a rounding mode toward zero environment 173

Kahle, J.A., Day, M.N., Hofstee, H.P., Johns, C.R., Maeurer, T.R. and Shippy, D. (2005)
‘Introduction to the Cell multiprocessor’, IBM Journal of Research and Development, Vol. 49,
Nos. 4–5, pp.589–604.

Knuth, D.E. (1998) The Art of Computer Programming, Volume 2, Seminumerical Algorithms,
3rd ed., Addison-Wesley, Reading, MA, USA.

Nguyen, H.D. (2007) Calcul précis et efficace sur le processeur Cell, Master report. Available
online at: http://www-pequan.lip6.fr/~graillat/papers/rapport_Diep.pdf

Priest, D.M. (1992, November) On Properties of Floating Point Arithmetics: Numerical Stability
and the Cost of Accurate Computations, PhD Thesis, Mathematics Department, University
of California, Berkeley, CA, USA. Available online at: ftp://ftp.icsi.berkeley.edu/
pub/theory/priest-thesis.ps.Z

Williams, S., Shalf, J., Oliker, L., Kamil, S., Husbands, P. and Yelick, K. (2006) ‘The potential of
the Cell processor for scientific computing’, CF'06: Proceedings of the 3rd conference on
Computing frontiers, ACM Press, New York, NY, USA, pp.9–20.

Notes
1 http://crd.lbl.gov/~dhbailey/dhbtalks/dhb-pelz.pdf
2 On the SPE, there are two pipelines. The first one is devoted to numerical operations, the

second one is for control and logical operations. The two pipelines can be used in parallel.
3 The SIMD unit computes on 128-bit vectors. The four single-singles values of a and b are cut

into two parts to keep the register organisation.
4 One word is equal to four bytes. In our case, one word is a single floating point number.

