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Abstract
We propose a reproducible variant of the unblocked LU factorization for graphics processor units (GPUs). For this
purpose, we build upon Level-1/2 BLAS kernels that deliver correctly-rounded and reproducible results for the dot
(inner) product, vector scaling, and the matrix-vector product. In addition, we draw a strategy to enhance the accuracy of
the triangular solve via iterative refinement. Following a bottom-up approach, we finally construct a reproducible
unblocked implementation of the LU factorization for GPUs, which accommodates partial pivoting for stability and can be
eventually integrated in a high performance and stable algorithm for the (blocked) LU factorization.
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1. Introduction

The IEEE 754 standard, created in 1985 and then revised in

2008, has led to a considerable enhancement in the relia-

bility of numerical computations by rigorously specifying

the properties of floating-point arithmetic. This standard is

now adopted by most processors, thus leading to a much

better portability of numerical applications.

Exascale computing (1018 operations per second) is

likely to be reached within a decade. For the type of sys-

tems yielding such performance rate, getting accurate and

reproducible results in floating-point arithmetic will repre-

sent two considerable challenges (Dongarra et al., 2014;

Lucas et al., 2014). By accuracy, we mean the relative error

between the exact result and the computed result. We

define reproducibility as the ability to obtain a bit-wise

identical floating-point result from multiple runs of the

code on the same input data. Reproducibility is also an

important and useful property when debugging and check-

ing the correctness of codes as well as for legal issues.

The solution of a linear system of equations is often at

the core of many scientific applications. Usually, this pro-

cess relies upon the LU factorization, which is also its most

compute-intensive part. Although there exist implementa-

tions of this factorization that deliver high performance on

a variety of processor architectures—including general-

purpose multicore processors, Intel Xeon Phi, and graphics

processors (GPUs)—their reproducibility and, even worst,

accuracy cannot be guaranteed. This problem is mainly due

to the non-associativity of floating-point operations, com-

bined with the concurrent thread-level execution of inde-

pendent operations on conventional multicore processors or

the non-determinism of warp scheduling on many-core

GPUs. This last type of architecture is especially appealing

for the acceleration of compute-intensive kernels, as those

appearing in dense linear algebra (Golub and Loan, 1996;

ICL Team, 2016).

In this work, we address the problem of reproducibility

of the LU factorization on GPUs due to cancellations and

rounding errors when dealing with floating-point arith-

metic. Instead of developing a GPU implementation of the

LU factorization from scratch, we rely on the hierarchical

and modular structure of linear algebra libraries and start by

creating and augmenting reproducible OpenCL kernels for

the BLAS (Basic Linear Algebra Subprograms; Dongarra

et al., 1990) that serve as building blocks in the LU
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factorization. In addition, we enhance the accuracy (in case

of non-correctly-rounded results) of these underlying

BLAS kernels for graphics accelerators.

We consider the unblocked left-looking algorithm for

the LU factorization (also known as jik or jki variant)

(Ortega, 1988). The unblocked version is important for the

solution of “batched” linear systems (Haidar et al., 2015),

where the goal is to solve a large sequence of independent

small-size problems, and also as a building block to assem-

ble high performance algorithms for the factorization. In

addition, the left-looking version is especially appealing for

fault tolerance, out-of-core computing, and the solution of

linear systems when the coefficient matrix does not fit into

the GPU memory. The unblocked left-looking algorithm

can be formulated in terms of the Level-1 and Level-2

BLAS kernels for the dot product (DOT), vector scaling

(SCAL), matrix-vector product (GEMV), and triangular system

solve (TRSV). We prevent cancellations and rounding errors

in these kernels by applying the following techniques:

� We leverage a long accumulator and error-free

transformations (EFTs) designed for the exact, that

is, reproducible and correctly-rounded, parallel

reduction (EXSUM) (Collange et al., 2015) in order

to derive an exact dot product (EXDOT). For this pur-

pose, we combine the multilevel parallel reduction

algorithm with the traditional EFT, called TwoProd

(Ogita et al., 2005), for the multiplication of two

floating-point numbers.

� By its nature, SCAL is both reproducible and correctly

rounded. However, in the unblocked left-looking

factorization, SCAL multiplies a vector by the inverse

of a diagonal element, which causes two rounding

errors (one to compute the inverse and one for the

multiplication by the inverse). To address this issue,

we provide an extension of SCAL (INVSCAL) that per-

forms the division directly, ensuring correctly-

rounded and reproducible results.

� We develop a reproducible and accurate implemen-

tation of GEMV by combining together a high

performance GPU kernel of this operation with the

exact DOT.

� To improve the parallel performance of TRSV, we use

a blocked variant that relies upon small TRSV involv-

ing the diagonal blocks and rectangular GEMV with

the off-diagonal blocks. This approach leads to a

reproducible, but not yet correctly-rounded, triangu-

lar solve (EXTRSV) (Iakymchuk et al., 2015b). We

tackle this accuracy problem by applying a few itera-

tions of iterative refinement.

� Finally, we integrate partial pivoting (Golub and

Loan, 1996) into unblocked left-looking algorithm

for the LU factorization which, as part of future

work, will allow us to employ this component in the

solution of batched linear systems as well as a build-

ing block for high performance blocked factoriza-

tion algorithms.

The article is organized as follows. Section 2 reviews sev-

eral aspects of computer arithmetic, in particular floating-

point expansions (FPEs) and the Kulisch superaccumulator.

Section 3 presents the ExBLAS library with its current set of

routines. Section 4 is devoted to the presentation of the pro-

posed reproducible LU algorithm. We evaluate our imple-

mentations in Section 5. Finally, we discuss related works

and draw conclusions in Sections 6 and 7, respectively.

2. Background

In this article, we consider the double precision format (bin-

ary64) as specified in the IEEE-754 standard. This standard

requires correctly-rounded results for the basic arithmetic

operations ðþ;�; �; =; ffiffip Þ, which means that the operations

are performed as if the result was first computed using infinite

precision, and then rounded to the floating-point format. In

this work, we assume the rounding-to-nearest mode.

Due to rounding errors, floating-point operations are

non-associative and, therefore, non-reproducible (IEEE,

1985). Hence, the accuracy and reproducibility of

floating-point operations strongly depend on their order

(Higham, 2002; Muller et al., 2010). As a consequence,

dynamic thread scheduling, which is often exploited to

improve the performance of parallel algorithms, may lead

to different results from one execution to another.

In the remainder of this section, we present a brief over-

view of algorithms that constitute the foundation of our

present work. Concretely, FPEs with EFTs (Section 2.1)

and a Kulisch superaccumulator (Section 2.2) have been

proposed in the past in order to perform addition/subtrac-

tion of floating-point numbers without round-off errors;

and these two algorithms have been efficiently combined

to derive the hierarchical scheme for parallel summation

(Collange et al., 2015) (Section 3.1) and dot product

(Iakymchuk et al., 2015a) (Section 3.2).

2.1. Floating-point expansion

FPEs allow us to recover and track rounding error which

occurs during floating-point additions. FPE represents the

result as an unevaluated sum of p floating-point numbers

whose components are ordered in magnitude with minimal

overlap to cover a wide range of exponents. FPEs of sizes

p ¼ 2 and 4, based on the EFT, are described in the works of

Li et al. (2002) and Hida et al. (2001), respectively. The

conventional EFT for the addition (TwoSum) is given in

Algorithm 1 (Knuth, 1997) and, for the multiplication

(TwoProd), in Algorithm 2 (Ogita et al., 2005). Algo-

rithm 1 computes the addition of two floating-point

Algorithm 1. EFT for the summation of two floating-point
numbers.
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numbers a and b and returns the result r and the error e

such that r and e do not overlap. Similarly, TwoProd

performs the multiplication of two floating-point numbers

a and b. For TwoProd, we use the fused-multiply-and-add

(FMA) instruction to track the error that computes a � b� r

with only one rounding at the end.

Adding one floating-point number to an expansion of

size p is an iterative process. The floating-point number is

first added to the head of the expansion and the rounding

error is next recovered as a floating-point number using the

TwoSum EFT. The error is then recursively accumulated to

the remainder of the expansion. As long as the dynamic

range of the sum is lower than 253�p (for binary64), the

FPE approach computes the accumulation of numbers

without loss of accuracy.

The performance advantage of FPEs is that they can be

kept in registers (after being fetched) during the computa-

tions. However, their accuracy may be insufficient for large

sums or for floating-point numbers with significant varia-

tions in magnitude. Additionally, the complexity of FPEs

grows linearly with their size.

2.2. Kulisch superaccumulator

The Kulisch superaccumulator covers the range from the

minimum representable floating-point value to the maxi-

mum value in absolute value. For the dot product of two

vectors composed of binary64 elements, Kulisch

(Kulisch and Snyder, 2011) proposed to use a 4288-bit

accumulator. The addition of products of binary64 values

is performed without loss of information by accumulating

every floating-point number in the superaccumulator (see

Figure 1). The superaccumulator can produce the exact sum

or dot product of a very large amount of floating-point

numbers with arbitrary dynamic ranges. However, the

superaccumulator incurs a large memory overhead, due to

the required storage hindering vectorization due to indirect

memory accesses.

3. Exact BLAS library (ExBLAS) on GPUs

This section briefly reviews the prototype implementa-

tion of the Exact BLAS (ExBLAS) library (Iakymchuk

et al., 2016a) that underlies our LU factorization. It

starts with the parallel reduction and dot product, as they

are two fundamental BLAS kernels, and then continues

with the triangular solver, outlining the improvements

present in this article compared with prior work. In

addition, we extend the set of routines to the scaling

of a vector by the inverse of a scalar and the matrix-

vector product, which represents new reproducible algo-

rithms and implementations. While presenting these

routines, we also expose how they are used within the

discussed unblocked LU factorization.

3.1. Exact parallel reduction: EXSUM

In our previous works (Collange et al., 2015; Iakymchuk

et al., 2016), we introduced a multilevel approach to the

summation problem. It combines the FPE and superaccu-

mulator algorithms. The procedure splits the computation

into five phases: filtering, private superaccumulation, local

superaccumulation, global superaccumulation, and round-

ing. This five-phase decomposition exploits the nested par-

allelism of modern parallel architectures such as GPUs.

The first phase of this hierarchical summation approach

relies on FPEs with EFTs for the accumulation of floating-

point numbers (see Algorithms 1 and 2). Each thread main-

tains its own FPE. In order to enable expansions of size p,

we apply Algorithm 3, based on Algorithm 1, enhanced

with superaccumulators in case the result of the accumula-

tion cannot be represented with a FPE of size p.

In the second phase, if the last rounding error x is non-

zero (see Algorithm 3), x is forwarded to the private super-

accumulator, the FPE is flushed to the superaccumulator,

and the accumulation process is continued. At the end of

the summation, all FPEs are forwarded to superaccumula-

tors. Depending on the amount of memory that is available,

private superaccumulators (shared among a small number

of threads) are allocated in either fast local memory, for

example, cache or shared memory, or global memory.

In the third phase, k private superaccumulators are

merged into a single local superaccumulator, one per group

of threads. In the fourth phase, all local superaccumulators

within a GPU are combined together into a global super-

accumulator. Finally, the global superaccumulator is

Figure 1. Kulisch superaccumulator.

Algorithm 2. EFT for the product of two floating-point
numbers.

Algorithm 3. Floating-point expansion of size p.
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rounded back to the target floating-point format, in the fifth

phase, in order to obtain the correctly-rounded result.

We developed hand-tuned variants of a single OpenCL

implementation for NVIDIA and AMD GPUs. These var-

iants use 16 superaccumulators per workgroup of 256

threads and employ local memory to store these superaccu-

mulators. In order to avoid bank conflicts, superaccumula-

tors are interleaved to spread their digits among different

memory banks. Concurrency between 16 threads that share

one superaccumulator is settled thanks to atomic operations

while scattering the input data into the corresponding digits

of the superaccumulator.

3.2. Exact dot product: EXDOT

We apply the multilevel parallel reduction algorithm (Col-

lange et al., 2015) to the dot product (Iakymchuk et al.,

2015a) by additionally utilizing the TwoProd EFT for the

exact multiplication of two floating-point numbers. The

GPU implementation of EXDOT is based on the same con-

cept that underlying EXSUM with an auxiliary function call

to TwoProd and the corresponding treatment of its outputs.

The performance results of the exact dot product on GPUs

present a small overhead induced by the summation of

two numbers (the result and the error) after each call to

TwoProd. In contrast, for large array sizes, EXDOT delivers

both numerically reproducible and correctly-rounded

results with comparable performance to its standard non-

deterministic version.

3.3. Exact vector scaling: EXSCAL and EXINVSCAL

Multiplying a vector x by a scalar a is a rather simple

kernel that requires only one operation to be performed for

each element of the vector (xi :¼ a � xi). When the IEEE

754-2008 compliance is ensured, this operation (EXSCAL) is

both correctly rounded and reproducible. However, the

unblocked LU factorization (Algorithm 7) requires a call

to the SCAL routine in order to scale the vector by the inverse

of the diagonal element. In that case, the result is not cor-

rectly rounded due to the two rounding errors coming from

the division followed by the multiplication. To ensure

correctly-rounded and reproducible results, we propose a

dedicated version of SCAL (EXINVSCAL). This version directly

performs division of the vector elements by the diagonal

element without the intermediate rounding error. Both

EXSCAL and EXINVSCAL are easy to implement on GPUs as

the update of the vector elements can be performed in

parallel by a team of threads.

3.4. Exact matrix-vector product: EXGEMV

The matrix-vector product (GEMV) is one of the building

blocks for the triangular solver as well as for the unblocked

LU factorization. Therefore, we next present its correctly-

rounded and reproducible implementation. The GEMV ker-

nel computes one of the following matrix-vector operations

y :¼ aA � xþ by or y :¼ aAT � xþ by ð1Þ

where a and b are scalars, x and y are vectors, and A is a

matrix of size m� n.

We derive a reproducible and accurate algorithm for

EXGEMV by combining its two-kernel algorithmic variants

from Bainville (2010) to achieve high performance; and the

exact dot product, which is described in Section 3.2, to

guarantee both reproducibility and accuracy of the results.

We next provide a description of the implementation as a

GPU kernel.

The proposed OpenCL implementation of the matrix-

vector product splits the computations into blocks, so that

each workgroup of threads computes a certain part of the

output vector y. Figure 2 shows how a part of the vector y

is computed using p workgroups of size mb. Each thread

from a workgroup is engaged in preloading a part of x

(colored in dark blue) into local memory, making it avail-

able to the whole workgroup. Then, each thread computes

its partial dot product using its own FPE, which is kept in

private memory; the computation on the thread-owned

FPEs is very fast. The FPEs with the partial results are

flushed to local superaccumulators that are stored in the

corresponding cells of the m� p matrix (dark green).

Concerning the superaccumulators, we adhere to one of

the following two scenarios:

1. Hold a matrix of m� p superaccumulators in global

memory and then perform a reduction on them in

order to obtain a vector of m superaccumulators that

corresponds to the output vector y.

2. Hold only a vector of m superaccumulators, where

each superaccumulator is shared among p threads,

and solve the contention for shared superaccumula-

tors using atomic operations.

The second scenario reduces the EXGEMV implementa-

tion to one kernel and releases the pressure on the global

memory. That is also beneficial for the n� 1 (n is a matrix

size) calls to EXGEMV within the unblocked LU factoriza-

tion. The first scenario is left for future work.

Each workgroup holds only a part of the vector x in its

local memory. This allows multiple workgroups per multi-

processor to proceed concurrently. This strategy also

m

p

:=
mb

A x

+

y

Figure 2. Work distribution in the matrix-vector product.
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maximizes the reuse of cached-shared parts of the vector x

as there are 256 or 512 threads per workgroup.

In the current version of ExBLAS, we provide imple-

mentations that cover all possible cases of EXGEMV as

depicted in equation (1).

3.5. Reproducible triangular solver: EXTRSV

The triangular solve involving a lower triangular coeffi-

cient matrix is one of the building blocks for the unblocked

LU factorization. We next provide the multilevel

reproducible approach for triangular systems with a single

right-hand side (Iakymchuk et al., 2015b) and reveal our

strategies for improving its accuracy.

Let us consider the system Lx ¼ b, where L is a non-

singular (square) lower triangular matrix. This system can

be solved using (sequential) forward substitution, as

depicted in Algorithm 4, where the elements of x are com-

puted from first to last.

Algorithm 5 represents the blocked algorithm for the

reproducible triangular solver with a lower triangular matrix.

Our strategy depicted in this algorithm is the following:

1. Use a blocked version of the triangular solver.

2. Apply the exact dot product (s :¼ s� lijxj) with FPEs

and superaccumulators. We apply this procedure

through the blocked EXTRSV: within the non-blocked

(called local) EXTRSV and the local blocked EXGEMV.

The array of superaccumulators is shared between

these two routines. Since the computations in the

blocked EXTRSV are performed in sequential order

(local EXTRSV, local EXGEMV, local EXTRSV, etc.), there

is no contention for the array of superaccumulators.

3. Correctly round the accumulated result (ŝ :¼
RNDNðaccðkÞÞ). One can notice that rounding to

double is performed only once—at the end of the

computation of each element of the solution.

4. Perform the division by the corresponding diagonal

element (x̂i :¼ ŝ=lii).

Theorem 3.1. The previous strategy yields a reproducible

solution for the triangular solve.

Proof. We give a proof by induction. As x1 :¼ b1=l11 and as

the division is correctly-rounded, the latter always returns

the same result, and, therefore, it is reproducible. Let us

now assume that x1; . . . ; xi�1 are reproducible. As the

computation s :¼ s� lijxj is done with a large accumulator,

there is no rounding error and the result is exact, indepen-

dently of the order of computation and, consequently,

reproducible. The operation ŝ :¼ RNDNðsÞ is reproducible

as it is a correctly-rounded operation. Finally, xi :¼ ŝ=lii is

reproducible as it is the result of a correctly-rounded divi-

sion between two reproducible quantities. c

With the proposed approach, the matrix, both the

right-hand side and the solution vectors are first split

into blocks. Then computations on those blocks are

organized as in Figure 3(a) and (b). With this organiza-

tion, each diagonal block of size blsz� blsz participates

in EXTRSV, and the panel underneath this block is

involved in EXGEMV. The challenge lies in ensuring a

balanced workload distribution among workgroups on

GPUs, and a light synchronization overhead, as some

parts of the algorithm (the local EXTRSV on the diagonal

blocks, see Figure 3(b)) still need to be executed in the

sequential order.

Each of the four aforementioned parts of the proposed

triangular solver is reproducible and, therefore, the com-

puted solution is reproducible as well. Compared with our

previous work (Iakymchuk et al., 2015b), in the new ver-

sion of ExBLAS we covered all the four variants of the

triangular solver as follows

T � x ¼ b or TT � x ¼ b ð2Þ

Algorithm 4. Forward substitution. Algorithm 5. Blocked EXTRSV: blsz stands for a block size; acc
refers to an array of superaccumulators of size n; accðkÞ
corresponds to one superaccumulator at the position k in this
array; ExpansionAccumulateðÞ accumulates a number using
Algorithm 3; RoundðÞ rounds a superaccumulator to the target
floating-point format.

Iakymchuk et al. 5



where x and b are n elements vectors, and T is an n� n unit,

or non-unit, upper or lower triangular matrix.

In order to enhance the accuracy of the reproducible

TRSV, we propose to apply a few iterations of iterative

refinement based on the ExBLAS routines, as described

in Algorithm 6. The overhead of the iterative refinement

can be diminished by locating the source of the accuracy

problem and, consequently, applying iterative refinement

directly on the diagonal blocks right after the local EXTRSV.

Theorem 3.2. Algorithm 6, for the triangular solve with

iterative refinement, is reproducible.

Proof. The first step uses EXTRSV to compute x̂ :¼ L�1b, so x̂

is reproducible. Inside the loop, we sequentially compute r,

d, and x, with each of them being reproducible due to the

use of EXTRSV, EXTRSV, and EXAXPY, accordingly. As a con-

sequence, the whole algorithm is reproducible. c

EXTRSV

EXTRSV

EXTRSV

EXTRSV

EXGEMV

EXGEMV

EXGEMV

blsz

(a)

blsz

wg1

wg0

wg3

wg2

(b)
Figure 3. Partitioning of a lower triangular matrix L, where blsz
stands for a block size and WGx is the number of a workgroup x:
(a) kernel wise and (b) work group wise.

Algorithm 7. The left-looking algorithmic variant of the
unblocked algorithm LU factorization with partial pivoting.

A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

i

1

m
–

i
–

1

i 1 n – i –1

Figure 4. Partitioning of the matrix A: a01;a11; a21 are updated
using Algorithm 7.

Algorithm 6. The reproducible triangular solver with iterative
refinement.
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4. Reproducible LU factorization

The LU factorization decomposes an m� n matrix A into

the product of an m� r unit lower triangular matrix L, with

r ¼ minðm; nÞ; an r � n upper triangular matrix U ; and an

r � r permutation P such that PA ¼ LU . In order to com-

pute this decomposition, we consider an unblocked left-

looking variant, illustrated in Algorithm 7 using the

FLAME notation (Bientinesi et al., 2005); van de Geijn

and Quintana-Ortı́, 2008). This notation makes it easier to

identify which regions of the matrix are updated and used

(see Figure 4). In Algorithm 7, size(A) represents the num-

ber of columns of the matrix A. Before the computation

starts, A is virtually partitioned into four blocks ATL, ATR,

ABL, and ABR, where ATL is a 0� 0 matrix. The matrix is

then traversed from the top-left to the bottom-right corner.

At each iteration of the loop, A is repartitioned from 2� 2

to 3� 3 form, where A00;A02;A20; and A22 are matrices;

a01; a
T
10; a

T
12; and a21 are vectors; and a11 is a scalar. The

algorithm updates a01, a11, and a21 using TRSV, DOT, and

INVSCAL/GEMV, respectively. At the end of the computation,

matrix A is overwritten by the upper triangular matrix U

and the unit lower triangular matrix L. Additionally, the

vector p of pivots (representing the permutations contained

in P) is created.

Algorithm 7 shows that, thanks to the modular and hier-

archical structure of linear algebra libraries, computations

of more complex algorithms—such as the LU factoriza-

tion—can be entirely expressed and built on top of the

lower level fundamental routines—in particular, the BLAS

one. We benefit from this hierarchical organization to pro-

pose a reproducible algorithmic variant of the unblocked

LU factorization, Algorithm 7, on top of the underlying

ExBLAS routines: EXTRSV, EXDOT, EXINVSCAL, and EXGEMV.

To enable support for (reproducible) partial pivoting in

Algorithm 7, we split this process into two stages:

1. Searching for the maximum element in absolute

value within the sub-diagonal part of a matrix col-

umn. This operation is always reproducible.

2. Swapping two rows. This operation is also reprodu-

cible by nature.

In addition, for this particular variant of the

unblocked LU factorization, we apply pivoting from the

previous iteration right before the computations update

the current one.

Theorem 4.1. Algorithm 7, for the unblocked LU factoriza-

tion with partial pivoting, is reproducible.

Proof. The first and last steps consist in partitioning the

matrix A that does not bring any reproducibility issues. All

computational steps of the unblocked LU factorization rely

upon their reproducible counterparts, such as EXTRSV,

EXDOT, EXINVSCAL, and EXGEMV, plus the reproducible strat-

egy implementing partial pivoting. As a consequence, the

result computed by Algorithm 7 is numerically

reproducible.

Therefore, we have successfully removed all sources of

indeterminism, while efficiently exploiting data paralle-

lism within each basic block. Even though the accuracy of

the result computed by Algorithm 7 is improved, it is not

correctly rounded. This is due to the fact that a rounding

step is executed between each reproducible BLAS opera-

tions. A solution to increase the accuracy is to perform

some iteration of iterative refinement. However, we

believe it is not possible to prove that correct rounding

can be achieved even with iterative refinement. This is

due to the fact that there exist obvious cases (division

by 3 or multiplications by small numbers, for example)

where numerical information that could be useful for

rounding could be lost due to underflow.

5. Experimental results

In this section, we evaluate our implementations of the

unblocked LU factorization with partial pivoting and its

underlying ExBLAS routines on three NVIDIA architec-

tures (see Table 1). Note that NVIDIA Tesla K80 cores are

with a dual-GPU design.

We develop unique OpenCL implementations for each

algorithm on GPUs and tuned these implementations—for

example, by promoting loop unrolling or changing work-

group size, and so on—for each particular architecture in

order to optimize performance. Moreover, our implementa-

tions strive to deliver the best performance through utiliz-

ing all the underlying resources of the target GPUs: SIMD

instructions, FMAS, private and local memory, as well as

atomic instructions. We check the correctness of our imple-

mentations by comparing the computed results with those

produced by the multiple precision sequential library

MPFR for CPUs on randomly generated test sets.

As a baseline for comparison purposes, we provide our

vectorized, parallelized, and optimized non-deterministic

double precision implementations of the matrix-vector

product, triangular solver, and the unblocked LU factoriza-

tion (Algorithm 7). We denote these implementations on

figures as “Parallel GEMV,” “Parallel TRSV,” and “Parallel

LU,” accordingly. We use these implementations as start-

ing points for the integration of our reproducible solutions.

Hence, these baseline implementations are very relevant in

order to assess the performance, accuracy, and reproduci-

bility of the results. Despite some performance penalties,

we would like to emphasize the importance of obtaining

reproducible and, if possible, correctly-rounded results.

Table 1. Hardware platforms employed in the experimental
evaluation.

NVIDIA Quadro K420 192 cores 0.780 GHz
NVIDIA Tesla K20c 2496 cores 0.706 GHz
NVIDIA Tesla K80 4992 cores 0.560–0.875 GHz

Iakymchuk et al. 7



5.1. EXGEMV results

While decomposing a matrix into a lower and an upper

triangular matrix using the LU factorization, the matrix-

vector product involves matrices of various shapes, starting

from column-panels, through squarish, and then row-

panels. In our experiments, we aim to evaluate these sce-

narios by considering the following three test cases:

1. GEMV with square matrices;

2. GEMV with row-panel matrices, where the number of

rows is fixed to m ¼ 256 and the number of col-

umns n varies; and

3. GEMV with column-panel matrices, where the num-

ber of columns is fixed to n ¼ 256 and the number

of rows varies.

Figure 5(a) presents the performance results achieved by

the matrix-vector algorithms for square matrices

m� nðm ¼ nÞ composed of double precision floating-

point numbers. In the caption of the following plots,

“Superacc” corresponds to the accurate and reproducible

matrix-vector algorithm that is solely based on superaccu-

mulators; “EXGEMV” stands for our exact implementation,

which delivers the best performance, with FPEs of size n

ðn ¼ 2 : 8Þ in conjunction with the TwoSum and TwoProd

EFTs, and superaccumulators when required. The

“Superacc” implementation, which can be classified as a

brute-force approach to ensure reproducibility, suffers from

its extensive memory usage and is an order of magnitude

slower than our solution.

The performance experiments using the latter two test

cases are depicted in Figure 5(b) and (c), respectively. Fig-

ure 5(c) shows rather constant execution time for all GEMV

implementations. This is due to the use of a column-wide

array of threads that performs local dot products within

GEMV. Figure 5(b) demonstrates the outcome of applying

this pool of threads iteratively over columns of the matrices

of size n� 256. This turns to be beneficial from the point of

view of performance, as the overhead decreases with the

number of columns. Figure 5(a) and (b) exhibits very close

relative performance results. The best performance among

the EXGEMV implementations for all the test cases is deliv-

ered by “FPE 3 þ Superacc”—an FPE of size 3 using both

TwoSum and TwoProd EFTs and superaccumulators, if

necessary. For instance, its overhead is 4:26 times for

m ¼ n ¼ 4096 compared to the non-deterministic GEMV
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Figure 5. Performance and accuracy results of GEMV: (a) GEMV (m ¼ n, step ¼ 256) on K80, (b) GEMV (m ¼ 256, n) on K80,
(c) GEMV (m, n ¼ 256) on K80, and (d) Accuracy of GEMV.
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implementation. To summarize, EXGEMV delivers both

reproducible and correctly-rounded results for different

shapes of both transpose and non-transpose matrices.

In addition, we tested the accuracy of the

double precision GEMV and the reproducible EXGEMV.

Figure 5(d) demonstrates the relative forward error

(k y� � ŷ k = k y� k, where ŷ and y� are the computed and

exact vectors, accordingly) against the condition number of

the problem. This condition number is computed with the

MPFR library as a ratio of norms of the exact matrix-vector

products, when the matrix and the vector are in their abso-

lute and original values: k jAj � jxj k = k A � x k. In order to

generate the ill-conditioned matrix-vector, we rely on the

ill-conditioned dot product. So that, the n� 1 rows of the

matrix A are created as random uniformly distributed num-

bers, for example, between 0 and 1, while one row and the

vector x correspond to the ill-conditioned dot product. The

exact vector y� is computed with the MPFR library and

rounded to the double precision vector. For visual repre-

sentation, we replaced all the errors that exceed 1 by 1 as

there is zero digit of accuracy left. Naturally, the relative

forward error of GEMV strongly depends on the condition

number and indicates the incorrectness of the computed

results once the condition number reaches 1016. Instead,

our reproducible EXGEMV ensures both correctly-rounded

and reproducible results as our approach preserves every

bit of the computed result until its final rounding.

5.2. EXTRSV results

Figure 6(a) shows a performance improvement around

35%, compared with the results of our previous work

(Iakymchuk et al., 2015b), delivered by EXTRSV on K20c.

This improvement is due to a new way we are handling

errors produced by one of the two outputs of TwoProd. In

our previous work (Iakymchuk et al., 2015b), these errors

were accumulated to the FPE starting from its head. How-

ever, most of the time this solution was suboptimal as the

error was much smaller that the head of the FPE, leading to

further error propagation along the FPE. Based on that

report, we decided to add these errors closer to the tail of

the expansion, namely in the last two or three slots of the

expansion. The difference in terms of performance among

FPEs of various sizes is less apparent as they follow the

same pattern with respect to the error propagation.

Figure 6(a) and (b) shows that there is still work to do on

architecture-specific implementations, since for large

matrices, EXTRSV on K420 only reports a 4� overhead,

while on both K20c and K80 the overhead reaches 25�.

Although OpenCL ensures portability, unfortunately, it
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Figure 6. Performance and accuracy results of TRSV: (a) On K20c, (b) On K80, (c) On K420, and (d) Accuracy of TRSV.
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does not come with performance portability. We have

already tuned our code on higher level for various GPU

architectures. However, it is clear that, for some kernels

as EXTRSV, additional architecture-specific implementations

should be provided.

Figure 6(d) provides a comparison for the relative for-

ward error versus the condition number of the double pre-

cision, TRSV, with the proposed reproducible, EXTRSV,

substitution algorithms. The relative forward error corre-

sponds to k x� � x̂ k = k x� k, where x̂ and x� are, respec-

tively, the computed and exact solutions. We use the

following Skeel formula (Higham, 2002; Skeel, 1979) to

calculate the condition number of a linear system Ax ¼ b

with real coefficients

condðA; xÞ ¼ k jA
�1jjAjjxj k
k x k

To perform those tests, we wrote a random generator of

ill-conditioned triangular systems using the algorithm pro-

posed by Louvet (2007); the random generator ensures that

both the matrix L and the right-hand side vector b are

composed of double precision floating-point numbers. In

order to compute the exact solution x�, we rely on the

MPFR library and rounded the result back to double preci-

sion. For the errors greater than 1, we cut them to 1 as the

results are obviously incorrect. This experiment reveals

that the relative forward error is proportional to the condi-

tion number and most importantly to the rounding error

u¼ 2�53. Altogether EXTRSV delivers most of the time better

accuracy as the double precision triangular solver. Indeed,

the accuracy of the classic triangular solver can be

improved via double-double precision. However, this

approach is already 9� slower than TRSV and, moreover,

it does not provide any guarantees on the reproducibility

of the results. Therefore, we propose to apply iterative

refinement, see Algorithm 6, in order to improve the accu-

racy of EXTRSV.

5.3. EXLU results

During the development of the reproducible LU factoriza-

tion, we discovered a limitation of OpenCL and, therefore,

the ExBLAS routines. This drawback refers to the possi-

bility of passing a reference to a location within a matrix

(A½i � ðldaþ 1Þ�) as a kernel argument. We overcame this

issue by passing an offset from the beginning of the matrix

to the desired location. That introduces a change in the API

of the BLAS to include a few new arguments.

Figure 7(a) and (b) reports the execution times

obtained by the unblocked algorithmic variant for the

LU factorization with partial pivoting as a function of the

matrix size (m ¼ n). The execution times of the EXLU

implementations are much larger than those of each

ExBLAS routine for a specific problem size. That is

because EXLU requires n� 1 executions of each underlying

ExBLAS routine for a matrix of size n. For instance,

EXTRSV finds the solution of a triangular system using

matrices of sizes from 1� 1 till ðn� 1Þ � ðn� 1Þ. In

order to ensure reproducibility, the proposed algorithm

based on EXLU requires extra computations and memory.

The outcome is visible in the form of 11� and 32� per-

formance overheads on K420 and K80, respectively, com-

pared to the double precision unblocked LU factorization;

the latter overhead is the result of the large performance

overhead caused by EXTRSV.
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Figure 7. Performance and accuracy results of the unblocked LU
factorization: (a) LU on K420, (b) LU on K80, and (c) Accuracy of
the LU factorization.
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Furthermore, we study the accuracy of the non-

deterministic and reproducible implementations of the

unblocked LU factorization (Algorithm 7) on matrices

with various condition numbers, covering a range from

102 to 1041; these results are depicted in Figure 7(c). To

produce these matrices, we modify the ill-conditioned tri-

angular matrix generator to cover a more general case. We

compute the error k PA� LU k as an infinity norm using

the MPFR library. For those errors that exceed 1, we

round them down to 1. As for EXTRSV, EXLU delivers more

accurate results than the double precision LU factoriza-

tion. However, due to the division by the diagonal element

in EXTRSV, the correct rounding of the results is not guar-

anteed in EXLU. We foresee to study and enhance this by

improving the accuracy of the underlying EXTRSV using

iterative refinement. Nevertheless, the EXLU implementa-

tions always deliver reproducible results.

6. Related work

There already exist some solutions to ensure numerical

reproducibility, which can be classified with respect to their

implementations into sequential, vectorized, multi-

threaded on multicores, and distributed. Those solutions,

at first, addressed sequential and parallel summation. For

example, Rump (2009) and Zhu and Hayes (2010) focus on

hybrid solutions that store the sum as floating-point num-

bers of fixed exponent without completely avoiding the

previous drawbacks. Arbitrary precision libraries—like

MPFR (Fousse et al., 2007)—are able to provide correct

rounding. However, they are not designed to achieve

acceptable performance for reproducible results. Moreover,

MPFR is also not multi-threaded. As a result, EXSUM is three

orders of magnitude faster than MPFR.

To ensure reproducibility, Intel introduced a Condi-

tional Numerical Reproducibility (CNR) option in its MKL

library (Intel®, 2012), but this does not provide any war-

ranty on the accuracy. In addition, a CNR-enabled execu-

tion of MKL kernels incurs a large performance overhead

compared to the existing alternatives. For instance, MKL’s

dasum() with CNR enabled is two times slower than both

the conventional MKL’s dasum() and EXSUM.

There are two other academic efforts to guarantee repro-

ducibility. The first by Demmel and Nguyen (2013), which

is built upon Rump (2009), proposed a family of algorithms

for reproducible summation in FP arithmetic. Demmel and

Nguyen improved their algorithms (Demmel and Nguyen,

2015) by passing over the input data only once. This

approach reduces the overhead to roughly 20%. Arteaga

et al. (2014) used this approach with improved communi-

cation and obtained the same accuracy with roughly 10%
overhead. Demmel and Nguyen applied their approach to

the absolute value summation, dot product, and 2-norm in

the ReproBLAS library. Recently, they introduced Ahrens

et al.’s (2016) new concepts—such as slice (significant bits

in a bin) and indexed type/sum—and reformulated the

algorithms (Demmel and Nguyen, 2015) in terms of these

concepts. They introduced the conversion algorithm that

leads to improved accuracy of their reproducible summa-

tion, handling of exceptions (not implemented in software),

propagation of overflows. ReproBLAS was extended to

include sequential matrix-vector and matrix-matrix prod-

ucts. However, ReproBLAS targets only CPU and does not

exploit the data parallelism available in BLAS routines.

The approach by Chohra et al. (2016) ensures reprodu-

cibility of both sequential and parallel summations. Chohra

et al. proposed to use a combination of existing solutions

such as FastAccSum (Rump, 2009) and OnlineExact (Zhu

and Hayes, 2010) depending on the size of the input vector.

They cover absolute value summation, 2-norm, dot product

and matrix-vector product, provided as the RARE-BLAS

library. RARE-BLAS, which is not publicly available, runs

on Intel server CPUs and Intel Xeon Phi coprocessors. The

reproducibility of 2-norm is an open question as the

returned result is faithfully rounded.

Alternatively, Collange et al. (2015) proposed a multi-

level approach to compute the reproducible summation.

Neal (2015) integrated this concept in its scalar superaccu-

mulators of different sizes for the summation problem in

the R package. This approach is based on FPEs and Kulisch

superaccumulators, discussed in Section 2. We showed that

the numerical reproducibility and bit-perfect (correct

rounding) accuracy can be achieved without performance

degradation for large sums with dynamic ranges of up to 90

orders of magnitude on a large variety of computer archi-

tectures, including conventional clusters, GPUs, and copro-

cessors. By tracking every bit of information for a product

of two FP numbers, we extended this approach to the dot

product, blocked triangular solver (Iakymchuk et al.,

2015b), and matrix-matrix multiplication (Iakymchuk

et al., 2016b). The initial release (v0.1) of the Exact BLAS

(ExBLAS) library (Iakymchuk et al., 2016a) included

implementations of only one algorithmic variant of GEMM

and TRSV. The latest release (v1.0), which is available at

https://exblas.lip6.fr, covers all algorithmic var-

iants of GEMV and TRSV. The aforementioned unblocked LU

factorization is also available at the same location as a

separate package.

7. Conclusions and future work

In numerical linear algebra, algorithms and their corre-

sponding implementation exhibit a modular and

hierarchical structure. This property permits to assemble

higher-level algorithms on top of fundamental kernels. In

this article, we leverage this layered organization of linear

algebra algorithms to derive reproducible algorithmic var-

iants for the LU factorization. We made the demonstration

that a class of reproducible higher-level linear algebra

operations can be constructed by following the bottom-

up approach. Through our development, we noticed that in

the context of reproducibility, this process is not

“automatic” and should be handled carefully especially

if accuracy is also a major concern.

Iakymchuk et al. 11
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As a case study, we considered the unblocked jik

variant of the LU factorization that relies upon the

Level-1/2 BLAS routines DOT, SCAL, GEMV, and TRSV. In

particular, we derived the accurate and reproducible

matrix-vector product and provided performance results

on NVIDIA GPUs. Additionally, we have improved the

performance of EXTRSV and drew a strategy to enhance its

accuracy via iterative refinement, potentially reaching

correctly-rounded results.

Although some of the performance results can be argued

in some scenarios, we advocate that we should not trade-off

numerical stability and reproducibility to performance. As

both goals are conflicting, users should start considering

that some of the performance benefit brought by today’s

multicore has to be devoted to the later one.
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