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Abstract
The Preconditioned Conjugate Gradient method is often employed for the solution of linear systems of equations arising
in numerical simulations of physical phenomena. While being widely used, the solver is also known for its lack of accuracy
while computing the residual. In this article, we propose two algorithmic solutions that originate from the ExBLAS project
to enhance the accuracy of the solver as well as to ensure its reproducibility in a hybrid MPI þ OpenMP tasks pro-
gramming environment. One is based on ExBLAS and preserves every bit of information until the final rounding, while the
other relies upon floating-point expansions and, hence, expands the intermediate precision. Instead of converting the
entire solver into its ExBLAS-related implementation, we identify those parts that violate reproducibility/non-associativity,
secure them, and combine this with the sequential executions. These algorithmic strategies are reinforced with pro-
grammability suggestions to assure deterministic executions. Finally, we verify these approaches on two modern HPC
systems: both versions deliver reproducible number of iterations, residuals, direct errors, and vector-solutions for the
overhead of less than 37.7% on 768 cores.
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1. Introduction

Many current scientific and engineering problems involve

the solution of large and sparse linear systems of equations.

Some traditional examples appear, for example, in circuit

and device simulation, quantum physics, large-scale eigen-

value computations, nonlinear sparse equations, and all

sorts of applications that include the discretization of par-

tial differential equations (PDEs) Barrett et al. (1994). For

many problems (especially those associated with 3-D mod-

els), the size and complexity of these systems have turned

iterative projection methods, based on Krylov subspaces,

into a highly competitive approach compared with direct

solvers Saad (2003). In particular, the Conjugate Gradient

(CG) method is one of the most efficient Krylov subspace-

based algorithms for the solution of sparse linear systems

when the coefficient matrix is symmetric positive definite

(s.p.d.) Saad (2003). Preconditioning is usually incorpo-

rated in real implementations of the method in order to

accelerate the convergence of the method and improve its

numerical features, yielding the Preconditioned Conjugate

Gradient (PCG) method.

One would expect that the results of different runs of PCG

are identical, for instance, in the number of iterations, the

intermediate and final residuals, as well as the solution-

vector. However, in practice this is not often the case due

to different reduction trees—the Message Passing Interface

(MPI) implementations (libraries) Gropp et al. (2014) offer

up to 14 different implementations for reduction—, OpenMP

tasks scheduling, data alignment, instructions used, etc. Each

of these factors may change the execution order of floating-

point operations, which are commutative but non-

associative, and, hence, result in non-reproducible results.

We define reproducibility as the ability to obtain a bit-
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wise identical and accurate result for multiple executions on

the same data. Therefore, our aim of this study is to ensure

reliable computations (we also refer to them as robust), at

reasonable cost, for codes that leverage PCG (or any similar

Krylov subspace solver) and encounter numerical issues dur-

ing sensitive computations of the residual. Our approach and

routines are also aimed to be used for debugging as we

ensure reproducible residuals, direct errors, number of itera-

tions, and solution-vector from the sequential, pure MPI, and

even hybrid MPI þ OpenMP versions.

Ensuring the bit-wise reproducibility is often a complex

and expensive task that imposes modifications to the

algorithm and its underlying parts such as the BLAS (Basic

Linear Algebra Subprograms) routines Lawson et al. (1979);

Dongarra et al. (1990). These modifications are necessary to

preserve every bit of information (both result and error) Col-

lange et al. (2015) or, alternatively, to cut off some parts of the

data and operate on the remaining most significant parts

Mukunoki et al. (2020); Demmel and Nguyen (2015).

Furthermore, the bit-wise reproducibility can become expen-

sive with the overhead of at least 8% for parallel reduction

Collange et al. (2015); Demmel and Nguyen (2015), up to 2x–

4x for matrix-vector product Iakymchuk et al. (2019b), and

more than 10x for matrix–matrix multiplication Iakymchuk

et al. (2016). In this paper, we aim to revisit reproducibility

and raise its appeal through reducing its negative impact on

performance and minimizing changes to both the algorithm

and its building blocks. We also raise a question: Can repro-

ducibility of algorithms be ensured by design with both min-

imal changes to algorithms and almost negligible overhead?

Hence, our idea is to address those parts of algorithms that

violate associativity—such as parallel reductions, dot prod-

ucts, and possible replacements by compilers of a � bþ c in

favor of fused multiply–add (fma) operation, etc.—as well as

to combine that with sequential executions of subblocks/sub-

routines. Such sequential execution of operations is reprodu-

cible under some constraints, for example the same initial

conditions on the input data like data alignment.

We consider to verify this idea (both algorithmic and

programmability) on a typical sparse linear algebra solver

such as PCG and ensure its reproducibility on parallel

distributed-memory systems using a hybrid combination

of the MPI þ OpenMP-tasks programming models. On one

hand, the hybridization reduces the communication burden

being more focused on inner node computations and work

balancing, especially on nodes with large core counts such

as those in the MareNostrum4 platform at Barcelona

Supercomputing Center. On the other hand, it introduces

a new challenge in the form of a double-level reduction: an

initial reduction among tasks inside a process/node, fol-

lowed by one among processes. Thus, we ensure reprodu-

cibility of the PCG solver by preventing nondeterministic

executions as follows:

� We construct two reproducible solutions: a first one

on the ExBLAS approach Iakymchuk et al. (2017)

and an alternative lightweight version based on

floating-point expansions (FPEs). The ExBLAS-

based approach with its cornerstone Kulisch long

accumulator Kulisch (2013) is robust but expensive

since it is designed to cover severe (ill-conditioned)

cases with very broad dynamic ranges. Motivated by

“100 bits suffice for many HPC applications” as

noted by David Bailey at ARITH-21 Bailey (2013)

and a mini accumulator from the ARM team Lutz

and Hinds (2017); Burgess et al. (2019), we derive a

faster but less generic version using FPEs, which is

the other core algorithmic component in the

ExBLAS approach, aiming to adjust the algorithm

to the problem at hand.

� As a consequence, we also address the common

issue of sparse iterative solvers—the accuracy

while computing the residual—and propose to use

solutions that offer reproducibility (and potentially

correct-rounding) only while computing the corre-

sponding dot products.

� Hence, we derive two hybrid (MPI þ OpenMP

tasks), reproducible, and accurate dot products using

ExBLAS and FPEs.

� Finally, we demonstrate applicability and feasibility

of the aforementioned idea with the ExBLAS- and

FPE-based approaches in the hybrid MPI þ OpenMP

implementation of PCG on an example of a 3D Pois-

son’s equation with 27 stencil points as well as several

test matrices from the SuiteSparse matrix collection.

This extends our previous results with the pure MPI

implementation of PGC Iakymchuk et al. (2019a) to

the more complex double-level dot products and

reductions with dynamic scheduling of the tasks.

To sum up: the FPE-based (we also call it Opt) solution

is efficient and fast, but it is limited to cases where the

condition number and/or the dynamic range do not exceed

certain thresholds, e.g. the dynamic range is below 1050.

(At this point, we note that the condition of a linear system

can be cheaply estimated with fair accuracy.) In compari-

son, the ExBLAS-based solution is reserved for extreme

cases as well as problems where we do not have any infor-

mation about the problem at hand.

This article is organized as follows. Section 2 reviews

several aspects of computer arithmetic, in particular

floating-point expansion and long accumulator, as well as the

ExBLAS approach for accurate and reproducible computa-

tions. Section 3 introduces the PCG algorithms and describes

in details its hybrid (MPIþOpenMP) implementation. We

present strategies for ensuring reproducibility of PCG in Sec-

tion 4 and evaluate corresponding implementations in Sec-

tion 5 . Finally, Section 6 reviews related work, while Section

7 draws conclusions and outlines future directions.

2. Background

At first, we briefly introduce the floating-point arithmetic

that consists in approximating real numbers by numbers
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that have a finite, fixed-precision representation. These

numbers are composed of a significand, an exponent, and

a sign: x ¼+x0 :x1 . . . xM�1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
mantissa

�be; 0 � xi � b� 1; x0 6¼ 0;

where b is the basis (2 in our case), M is the precision, and e

stands for the exponent that is bounded (emin � e � emax).

The IEEE 754 standard IEEE Computer Society (2008),

created in 1985 and then revised in 2008, has led to a

considerable enhancement in the reliability of numerical

computations by rigorously specifying the properties of

floating-point arithmetic. This standard is now adopted

by most processors, thus leading to a much better portabil-

ity of numerical applications. The standard specifies

floating-point formats, which are often associated with pre-

cisions like binary16, binary32, and binary64, see Table 1.

Floating-point representation allows numbers to cover a

wide dynamic range that is defined as the absolute ratio

between the number with the largest magnitude and the

number with the smallest nonzero magnitude in a set. For

instance, binary64 (double precision) can represent pos-

itive numbers from 4:9� 10�324 to 1:8� 10308, so it cov-

ers a dynamic range of 3:7� 10631.

The IEEE 754 standard requires correctly rounded

results for the basic arithmetic operations ðþ;�;�; =; ffiffip
;

fmaÞ. It means that the operations are performed as if the

result was first computed with an infinite precision and then

rounded to the floating-point format. The correct rounding

criterion guarantees a unique, well-defined answer, ensur-

ing bit-wise reproducibility for a single operation. Several

rounding modes are provided. The standard also contains

the reproducibility clause that forwards the reproducibility

issue to language standards. Emerging attention to repro-

ducibility strives to draw more careful attention to the prob-

lem by the computer arithmetic community. It has led to the

inclusion of error-free transformations (EFTs) for addition

and multiplication—to return the exact outcome as the

result and the error—to assure numerical reproducibility

of floating-point operations, into the revised version of the

standard. These mechanisms, once implemented in hard-

ware, will simplify our reproducible algorithms—like the

ones used in the ExBLAS Collange et al. (2015), Repro-

BLAS Demmel and Nguyen (2015), OzBLAS Mukunoki

et al. (2020) libraries—and boost their performance.

There are three approaches that enable the addition of

floating-point numbers without incurring round-off errors

or with reducing their impact. The main idea is to keep

track of both the result and the errors during the course

of computations. The first approach uses EFT to compute

both the result and the rounding error and stores them in a

floating-point expansion (FPE), which is an unevaluated

sum of p floating-point numbers, whose components are

ordered in magnitude with minimal overlap to cover the

whole range of exponents. Typically, FPE relies upon the

use of the traditional EFT for addition that is twosum

Knuth (1969) (Algorithm 1) and for multiplication that is

twoprod EFT Ogita et al. (2005) (Algorithm 2). Note that

the underlying architecture should support fma, which is

often the case. Otherwise, we refer to Algorithm 3.3 in

Ogita et al. (2005), which relies on Dekker’s algorithm for

splitting a floating-point number Dekker (1971); this alto-

gether requires 17 flops in contrary to 3 flops of Algorithm

2 with fma.

The second approach projects the finite range of expo-

nents of floating-point numbers into a long vector so called

a long (fixed-point) accumulator and stores every bit there.

For instance, Kulisch Kulisch and Snyder (2011) proposed

to use a 4288-bit long accumulator for the exact dot product

of two vectors composed of binary64 numbers; such a

large long accumulator is designed to cover all the severe

cases without overflows in its highest digit.

The third approach is based on slicing or splitting a

floating-point number into slices using Dekker’s algorithm.

Then, the same work is carried separately on each slice and

the accumulated results are aggregated/merged. More

details and analysis can be found in Rump et al. (2008a),

Table 1. Parameters for three IEEE arithmetic precisions; quadruple (128 bits) is omitted.

Type Size Significand Exponent Rounding unit Range

half 16 bits 11 bits 5 bits u¼ 2�11 � 4:88� 10�4 � 10+5

single 32 bits 24 bits 8 bits u¼ 2�24 � 5:96� 10�8 � 10+38

double 64 bits 53 bits 11 bits u¼ 2�53 � 1:11� 10�16 � 10+308

Algorithm 1. Error-free transformation for the summation of
two floating-point numbers.

Algorithm 2. Error-free transformation for the product of two
floating-point numbers.
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with ideas originating from Zielke and Drygalla (2003).

This approach is implemented in ReproBLAS and

OzBLAS.

2.1. ExBLAS–Exact BLAS

The ExBLAS project Iakymchuk et al. (2015) is an effort to

derive fast, accurate, and reproducible BLAS library by

constructing a multilevel approach for these operations that

are tailored for various modern architectures with their

complex multilevel memory structures. On one side, this

approach aims to ensure similar performance compared

with the nondeterministic parallel counterparts. On the

other side, the approach preserves every bit of information

before the final rounding to the desired format to assure

correct-rounding and, therefore, reproducibility. Hence,

ExBLAS combines together long accumulator and FPE

into algorithmic solutions. In addition, it efficiently tunes

and implements them on various architectures, including

conventional CPUs, NVIDIA and AMD GPUs, and Intel

Xeon Phi co-processors (for details we refer to Collange

et al. (2015)). Thus, ExBLAS assures reproducibility

through assuring correct-rounding.

The cornerstone of ExBLAS is the reproducible parallel

reduction, which is at the core of many BLAS routines. The

ExBLAS parallel reduction relies upon FPEs with the

twosum EFT Knuth (1969) and long accumulators, so it

is correctly rounded and reproducible. In practice, the latter

is invoked only once per overall summation which results

in the little overhead (less than 8 %) on accumulating large

vectors. Our interest in this article is the dot product of two

vectors, which is another crucial fundamental BLAS oper-

ation. The EXDOT algorithm is based on the previous EXSUM

algorithm and the twoprod EFT Ogita et al. (2005) (see

Algorithm 2): the algorithm accumulates the result and the

error of twoprod to same FPEs and then follows the EXSUM

scheme. These and the other routines—such as matrix-

vector product, triangular solve, and matrix–matrix multi-

plication—are distributed in the ExBLAS library.1 In this

paper, we derive a hybrid MPI þ OpenMP tasks EXDOT,

where a long accumulator is shared among OpenMP tasks

within one process and each OpenMP thread owns two

FPEs underneath (one for the result and the other for the

error) that are merged at the end of computations.

3. Algorithm(s)

In this section we review the PCG algorithm and its task-

parallel implementation using MPI and OpenMP tasks. The

goal of the following analysis is twofold: to offer a com-

plete description of the parallelization approach and, even

more important, to identify key inter-node (i.e., between

Figure 1. Formulation of the PCG solver annotated with computational kernels. The threshold tmax is an upper bound on the relative
residual for the computed approximation to the solution. In the notation, < �; � > computes the DOT (inner) product of its vector
arguments.
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MPI ranks) and intra-node (i.e., between threads executing

tasks) communications, in particular reductions, which

pose a challenge to ensuring reproducibility.

3.1. Preconditioned Conjugate Gradient Solver

We consider the linear system Ax ¼ b, where the coeffi-

cient matrix A 2 Rn�n is sparse and symmetric positive

definite (s.p.d.), with nz nonzero entries; b 2 Rn is the

right-hand side vector; and x 2 Rn is the sought-after solu-

tion vector. Figure 1 presents the algorithmic description of

the classical iterative PCG. In the body loop of the algo-

rithm, the following operations are executed: a sparse

matrix-vector product (SPMV) (S1), three DOT products

(S2, S6, and S8), three AXPY (-like) operations (S3, S4,

and S7), the preconditioner application (S5), and a few

scalar operations Barrett et al. (1994).

In particular, in the proposed implementation of the

PCG method, we incorporate a Jacobi preconditioner Saad

(2003), which is composed of the elements in the diagonal

of the matrix (M :¼ D ¼ diagðAÞ). Therefore, the applica-

tion of the preconditioner is carried out on a vector and

involves an element-wise multiplication of two vectors.

3.2. Message-passing PCG

In this subsection we analyze the communication patterns

of a message-passing implementation of the PCG solver

that operates in a distributed-memory platform. For clarity,

hereafter we will drop the superindices that denote the

iteration count in the variable names. The following con-

siderations are taken into account in the analysis of the

communications:

� The parallel platform comprises K processes (or MPI

ranks), denoted as P1, P2, . . . , PK.

� The coefficient matrix A is partitioned into K blocks

of rows (A1, A2, . . . , Ak), with the k-th distribution

Figure 2. Message-passing formulation of the PCG solver annotated with communication.
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block Ak 2 Rpk�n stored in Pk, and n ¼
PK

k¼1pk .

� Vectors are partitioned and allocated conformally

with the block-row distribution of A. For example,

the residual vector r is partitioned as r1, r2, . . . , rK,

where Pk stores rk.

� The scalars a;b; r; t are replicated on all K

processes.

Considering these previous aspects, we next examine

how they affect the different computational kernels

(S1–S8) that are executed in a single PCG iteration in

Figure 1.

Sparse matrix-vector product (S1): The input operands

are the coefficient matrix A, which is distributed by blocks

of rows, and the vector d, which is partitioned and distrib-

uted according to A. A communication stage is required

before executing this kernel in order to assemble the dis-

tributed parts of vector d into a single vector e, which is

replicated in all processes. We denote this communication

as d ! e, which can be performed in MPI via an

MPI_Allgatherv. Note that vector e is the only array

that is replicated in all processes. After that, the computa-

tion can proceed in parallel and each process calculates its

local slice of the output vector w: Pk : wk :¼ Ak e:
DOT products (S2, S6, S8): In this kernel, each process

can compute concurrently a partial result (in step S2, Pk

calculates rk :¼< dk ;wk >). Then, these intermediate val-

ues are reduced into a globally replicated scalar (for exam-

ple, r :¼ b=ðr1 þ r2 þ � � � þ rKÞ in S2). We implement

this reduction in MPI using MPI_Allreduce. Applying

this idea to all the DOT products, there are three process

synchronizations because r;b; t are globally replicated.

AXPY(-type) vector updates (S3, S4, S7): The AXPY kernel

involves two distributed vectors (x and d in S3) and a glob-

ally replicated scalar (r in S3). This kernel can be executed

concurrently because all processes can perform their local

parts of the computation without any communication

(Pk : xk :¼ xk þ rdk).

Application of the preconditioner (S5): The kernel in step

S5 consists in applying the Jacobi preconditioner M. In order

to do that, vector r is scaled by the diagonal of the matrix.

Here, each process stores a different group of the diagonal

elements and also a local piece of the vector r, so that, the

computations can be done in parallel, i.e Pk : zk :¼ M�1
k rk .

The algorithm with communications is summarized in

Figure 2. We can rearrange the operations to reduce the the

number of synchronizations in the loop body of the PCG

solver, as shown there. Concretely, pushing up step S8 next

to step S6, we can simultaneously execute these two reduc-

tions by merging them into one reduction and, hence, the

number of synchronizations decreases from three to two per

iteration of PCG.

3.3. Task-parallelism in message-passing PCG

In a cluster of multicore processors, a good practice to

increase the performance of the codes is to introduce an

additional level of parallelism. This level is exploited in

each node of the cluster using, for example, OpenMP. The

analysis in Aliaga et al. (2017); Barreda et al. (2019)

exposes that, in the PCG, a reasonable option is to leverage

task-parallelism, which consists in dividing each kernel

into a collection of finer-grain operations, or tasks. Then,

each thread executes a different task and two consecutive

kernels can be executed concurrently avoiding a thread-

synchronization point after each kernel, as described next.

In the following analysis, for simplicity, we merge the

execution of S3 with that of S4; and S8 with S6 . Therefore,

we will only consider kernels S1–S2 and S4–S7 in the loop

body of the PCG solver (see Figure 2). Thus, the operations

in the solver are interlaced by a series of data dependencies

which impose a strict order of execution:

� � � S7B
iteration l�1

!d S1!w S2!r S4!r S5!z S6!b S7I

iteration l

!d S1 � � �B

iteration lþ1

;

where the variable that generates the dependency is

denoted on top of each dependency arrow.

Exploiting task-parallelism allows that some of these

kernels can be (partially) computed concurrently (denoted

with the symbol “k“), breaking the strict inter-kernel bar-

riers due to the dependencies; in particular, we aim to attain

a parallel execution with S1 k S2 and S4 k S5 k S6 .

Sparse matrix-vector product S1 k DOT product S2: On

the one hand, the local operands to process Pk of the SPMV

can be divided as wk :¼ Ak e:

~w1

~w2

..

.

~wI

2
66664

3
77775 :¼

~A1;1
~A1;2 . . . ~A1;J

~A2;1
~A2;2 . . . ~A2;J

..

. ..
. . .

. ..
.

~AI ;1
~AI ;2 . . . ~AI ;J

2
666664

3
777775

e1

e2

. .
.

eJ

2
66664

3
77775:

Here, we can consider each group of rows as a task,

which computes the corresponding SPMV operation to

obtain a partial result, ~wk . For example, if we consider

~w1, there is a task calculating ~w1 ¼
PJ

j¼1
~A1;jej.

On the other hand, the computation local to Pk for the

DOT product S2 can be decomposed into S tasks. These tasks

can be computed concurrently by partitioning the input

operands dk ;wk into S pieces, with each task obtaining a

partial result ~rs:

rk :¼ < dk ;wk >	 ~rs :¼ < ~ds; ~ws >; s ¼ 1; 2; . . . ; S :

These partial results are reduced to generate a unique

value local to the k-th node, rk :¼
PS

s¼1~rs, and these local

values are thereafter reduced across all K nodes to produce

the globally replicated scalar r :¼
PK

k¼1rk .

Note that the advantage here is that we can eliminate the

dependency S1! S2, by splitting up these operations into

fine-grain tasks. Hence, the execution of some tasks of the

second kernel can start as soon as the corresponding results

of the previous one are available, resulting in a partially

parallel execution of these two tasks. However, the global

6 The International Journal of High Performance Computing Applications XX(X)



reduction required at the end of S2 enforces a task/process

synchronization point that is an impediment to extend this

idea further that point.

AXPY vector update S4 k preconditioner application S5 k
DOT product S6:

S4–S6 can be computed in parallel by applying a similar

division of the three kernels into fine-grain. Nevertheless, again

a task/process synchronization is required right after S6 .

AXPY vector update S7 and SPMV S1 (subsequent

iteration):

The convergence test and the requirement to perform the

replication d ! e at the beginning of each iteration, inserts

a process synchronization that makes impossible the con-

current computation of the local tasks corresponding to

these two kernels.

3.4. Implementation using MPIþOpenMP

In this subsection we detail how to exploit the described

two levels of parallelism via a combination of two parallel

programming interfaces: MPI MPI forum (2019) and

OpenMP OpenMP ARB (2019).

We leverage OpenMP tasks to implement task-

parallelism. At execution time, the runtime system under-

lying OpenMP detects data dependencies between tasks,

with the help of compiler directives (#pragma omp task)

annotated with clauses that indicate the task operands’

directionality (input (in), output (out) or both (inout)).

Then, a task graph is generated during the execution, which

is used to schedule the tasks to the cores, exploiting the

inherent task-level parallelism while fulfilling the depen-

dencies embedded in the graph.

As an example, the DOT product, which computes

a :¼ xT y, x; y 2 Rq, is annotated as

#pragmaomptaskdepend(in:x[0:n],y[0:n])

depend(out: alpha)

ddot (int q, double *x, int incx,

double *y, int incy, double alpha);

For the routine AXPY y :¼ yþ ax, the code snippet using

OpenMP tasks is as follows:

#pragma omp task depend(in: alpha, x[0: n])

depend(inout: y[0: n])

daxpy (int q, double alpha, double *x,

int incx, double *y, int incy);

The replication of vector d into e is performed

across the processes using the MPI collective MPI_

Allgatherv, as stated previously. To ensure that all the

processes have finalized their computation of d prior to

the MPI collective, we introduce a task barrier, using the

directive #pragma omp taskwait. This creates a task

synchronization point because it enforces that all tasks

up to that point are completed. Furthermore, this syncro-

nization point is leveraged to perform the convergence

test (t > tmax?) right after it, which is followed by an

implicit MPI syncronization across processes in the MPI

collective primitive.

The MPI_Allreduce primitive is used to implement

the global reductions. Similarly to the previous case, we

insert a #pragma omp taskwaiton the specific variable

being reduced before invoking the MPI collectives for the

Figure 3. Dependencies between kernels in the PCG solver.

Listing 1: Process-local DOT product with OpenMP tasks and
ExBLAS.

Iakymchuk et al. 7



reduction. This ensures that all tasks operating on that vari-

able have been finalized prior the reduction across nodes

can start. Moreover, atomic updates are employed to accu-

mulate the results from each reduction task (e.g., ~bn for S8)

into the local result (bk).

The previous description is condensed in Figure 3,

focusing on the operations computed by the process Pk,

during the iteration l.

4. Reproducibility of PCG

In this section, we present our strategies for ensuring

reproducibility of the PCG solver. The first strategy relies

on the ExBLAS approach, while the second is derived

from it and is based on FPEs. Both strategies are rein-

forced with programmability components such as the

explicit use of fma instructions and a careful rearrange-

ment of computations. Therefore, the reproducibility of

the PCG solver is guaranteed via reproducibility of its

building blocks on each iteration.

4.1. ExBLAS-based Strategy

Section 2.1 provides an overview of the ExBLAS approach.

Here we exploit the ExBLAS parallel reduction in conjunc-

tion with the twoprod EFT to derive a hybrid MPI (inter-

node, distributed) and OpenMP (intra-node) for the DOT

products appearing in PCG. The intra-node DOT product is

presented here, and its distributed part is described in Sec-

tion 4.3 together with the FPE-based alternative.

For accurate and reproducible DOT product within an

MPI process, we rely upon OpenMP tasks following the

ExBLAS approach. We allocate one long accumulator per

MPI process as well as, within the exblas:: cpu::

exdot, a vector of FPEs shared among OpenMP threads.

Hence, the work on the process-local DOT products is

divided into multiple task (more than threads) in such a

way that the intermediate results from each task are stored

in this large vector of FPEs. To complete the local DOT

products we flush all FPEs sequentially into the process-

owned long accumulator. Listing 1 outlines the code snip-

pet of this implementation. Accumulate is presented in

Algorithm 4, however here it also includes a possibility to

flush the error to the long accumulator in case of not

enough capacity to store this error.

Delivering both correctly rounded and reproducible

results, ExBLAS has two major drawbacks Collange

et al. (2015). The first drawback is related to the required

memory storage, which amounts for nt � pþ accs; where

nt is the thread count, p is the size of floating-point expan-

sion, and accs is the size of superaccumulator (2,098 bits

for summation). The second drawback is the number of

required operations: For an input vector of size n with

dynamic range d, the cost of accumulation is

n� d

52

� �
� Cf pe

VL
þ nt � p� VL� Csa; whend < 52p;

n� p� Cf pe

VL
þ Csa

� �
þ nt � p� VL� Csa; otherwise;

where Cf pe ¼ 6 flops, see Algorithm 1, is the cost of the

expansion update, VL is the architecture-dependent vector

length on SIMD architectures (4 with AVX and 1 on

GPUs), and Csa ¼ 16 flops þ2 indirect memory accesses

is the cost of the long accumulator update. The right-hand

side term is the cost of flushing expansions to long accu-

mulators at the end of the summation and gets negligible as

n increases. These two drawbacks can be observed for

compute-intensive kernels, leading to large performance

Listing 2: Process-local DOT product with OpenMP tasks and
FPEs.

Algorithm 3: Aggregation of two FPEs of size p.

Algorithm 4: Adding a floating-point number x to a floating-point
expansion a of size p.

Listing 3: Reproducible Allreduce with ExBLAS.
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overheads Iakymchuk et al. (2016). However, these draw-

backs are either hardly visible or relatively small on band-

width- and memory-bound operations such as the DOT

product (reduction) and potentially PCG due to the possi-

bility to saturate bandwidth and hide the cost of extra com-

putations and memory needs.

4.2. FPE-based Strategy

We introduce a lightweight strategy for reproducibility

using the ExBLAS approach as a starting point. The

ExBLAS drawbacks served us as a motivation to design

an alternative, cheaper strategy for reproducible compu-

tations with accuracy (correct rounding) guarantees.

Examining the PCG method for moderately conditioned

but largely sparse matrices, like the studied Poisson

matrices, we come to the conclusion that the method can

successfully accommodate accurate and reproducible

computations, ensuring their robustness, using eight-

floating-point numbers, meaning the FPE of size 8

(FPE8). In fact, the size of FPEs is tunable and exposed

to the end user. This approach is complemented with the

early-exit technique Collange et al. (2015): we stop pro-

pagating zero-errors in the FPE. From our experience, the

early-exit technique significantly improves performance.

According to Hida et al. (2001), FPE8 is capable to rep-

resent at least 424 ¼ 8 � 53 bits of significant. Our main

motivation for iterative solvers, where next iteration cor-

rects the previous estimate, is to provide a good enough

associativity-assuring approach since the properties pro-

vided by ExBLAS get demolished by the next computa-

tion/iteration. In fact, we are working on developing a

concept of weak reproducibility Imamura et al.

(2019)—reproducibility under a certain accuracy guaran-

tee, e.g. defined as the input tolerance, that is not necessarily

correct rounding. However, we want all computations on a

single iteration to be reproducible. Therefore, the FPEs of

size 8 with the early-exit technique is generic enough to

cover a wide range of problems with various condition

numbers and/or dynamic ranges. We also use two differ-

ent FPEs underneath (one for results and another for

errors) that are merged at the end of computations before

rounding.

We discuss here the DOT product using OpenMP tasks,

while the distributed DOT product is presented in the section

below. Listing 2 outlines the FPE-based solution: each MPI

process allocates a vector of FPEs for each OpenMP thread

and invokes a local routine to conduct DOT products on their

local copies of vectors of size Nk. This local DOT product

routine subdivides the process-local DOT product into tasks

of size bm; each task calls a sequential DOT product. This

DOT product as in Listing 1 is composed of the call to two-

prod EFT (Algorithm 2) for the exact multiplication of

two floating-point numbers; and, then, the accumulation

of the output result and the error to the thread local FPEs

with the help of Algorithm 4, which relies upon the two-

sum EFT (Algorithm 1). Later, the FPEs with the result and

the error are combined into one by invoking Algorithm 3,

which calls Algorithm 4 in a loop over the FPE with errors:

Accumulateðf pe; f perr½i
Þ. To complete the OpenMP DOT

product, we perform the process-local reduction on FPEs

by sequentially executing Algorithm 3. Finally, we round

the FPE-result to the target precision using the NearSum

algorithm Rump et al. (2008b), which is described in

Section 4.3.

4.3. Reinstalling Reproducibility of PCG

We reassure reproducibility of parallel PCG by first exam-

ining potential sources of nondeterministic computations

and, in addition, presenting our mitigation strategies for

them. Note that we target a hybrid MPI þ OpenMP tasks

implementation of PCG, where each process conducts com-

putations on its own local slices of the matrix as well as the

vectors (see Section 3.2 and Figure 2).

DOT products (S2, S6, S8): The main issue of nondeter-

minism emerges from DOT products and, thus, the parallel

reductions such as MPI_Allreduce() that are employed

in order to compute the tolerance t as well as both b and r.

Hence, we 1) exploit the ExBLAS approach to build repro-

ducible and correctly rounded DOT product; 2) construct DOT

product solely based on FPEs; 3) extend the ExBLAS- and

FPE-based DOT products to distributed memory in order to

make them suitable for the PCG algorithm in Figure 2.

While Sections 4.1 and 4.2 present implementations of DOT

product using OpenMP tasks, i.e. within each MPI process,

Listings 3 and 4 provide pseudo-codes for our implemen-

tation of the distributed DOT product using the ExBLAS and

lightweight strategies, respectively. After carrying out

process-local DOT products, via either ExBLAS- or FPE-

based implementations, we realize the global reduction

by splitting them into three stages:

� MPI_Reduce() acting on either long accumulators

or FPEs. For the ExBLAS approach, since the long

accumulator is an array of long integers, we apply

regular reduction. Note that we may need to carry an

extra intermediate normalization after the reduction

of 2K�1 long accumulators, where K ¼ 64� 52 ¼
12 is the number of carry-safe bits per each digit of

long accumulator. For the FPE approach, we may

need to renormalize FPEs using the Priest’s

Listing 4: Reproducible Allreduce with FPEs only.
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renormalization method Hida et al. (2001); Priest

(1991) and define the MPI operation that is based

on the twosum EFT, see Algorithm 3;

� Rounding to double: for long accumulators, we use

the ExBLAS-native Round() routine. To guarantee

correctly rounded results of the FPE-based computa-

tions, we employ the NearSum algorithm from

Rump et al. (2008b) for FPEs of size eight or variable

size; it may require renormalization before.

� MPI_Bcast() to distribute the result of DOT product

to the other processes as only master performs

rounding.

Splitting the MPI_Allreduce() operation into

MPI_Reduce() and MPI_Bcast() provides us full con-

trol of the operation and even may lead to better perfor-

mance as noted in Hunold and Carpen-Amarie (2016).

Sparse matrix-vector product (S1): The other reprodu-

cibility issue is hidden in the computation of the sparse

matrix-vector product. With the current distributed imple-

mentation of this operation, each MPI process computes its

dedicated part wk of the vector w by multiplying a block of

rows Ak by the vector e. These process-local multiplications

are correspondingly divided into tasks, where each task is

responsible for a product of a subblock of rows by the

vector. Since the computations are carried locally and

sequentially, they are deterministic and, thus, reproducible.

However, some parts of the code like aþ ¼ b � c—present

in the original implementation of PCG—may not always

provide with the same result, depending on the compiler

optimization strategies.

Our approach to solve this issue is to explicitly instruct

compilers to use fma.2 Note that the underlying architec-

ture should support fma; otherwise, this may lead to the

runtime error. This is possible through the std:: fma

instruction added to the C þþ 11 language standard. With

this option, we avoid nondeterminism in the order of oper-

ations, reduce the number of rounding errors from three to

two, and, therefore, achieve reproducibility for this type of

operations. Consequently, we accomplish reproducibility

for the sparse matrix-vector multiplication.

AXPY(-type) vector updates (S3, S4, S7): For this type of

operations, we rely upon the sequential MKL implementa-

tion of AXPY(-type) . Alternatively, we can replace this call

to MKL’s AXPY(-type) by our implementation using fma to

ensure correctly-rounded and, hence, reproducible results.

This will not impact performance since the algorithm is

strictly memory-bound and this type of kernels are not

performance crucial.

Application of the preconditioner (S5): The application

of the Jacobi preconditioner is rather simple: first, the

inverse of the diagonals are computed and then the appli-

cation of the preconditioner only involves element-wise

multiplication of two vectors. Thus, this part is both cor-

rectly rounded and reproducible.

Reproducibility and accuracy of both approaches: It is

evident that the results provided by ExBLAS DOT are both

correctly-rounded and reproducible. With the lightweight

DOT, we search for the minimal size of FPE such that we

still preserve every bit of both the result and the error. For

the studied 3D Poisson’s equation, the sweet spot is the

FPE of size 3, which ensures identical results to ExBLAS

and the reference highly accurate solution. However, we

aim also to be generic and, hence, we provide the imple-

mentation that relies on FPEs of size eight with the

early-exit technique. We add a check for the FPE-based

implementation for those cases where the condition num-

ber and/or the dynamic range are too large and we cannot

keep every bit of information. A warning is then raised,

offering also a suggestion to switch to the ExBLAS-based

implementation. Nonetheless, note that the lightweight

implementation is intended for moderately conditioned

problems or with moderate dynamic range in order to be

accurate, reproducible, but also high performing since

the ExBLAS version can be very resource demanding.

To sum up, if the information about the problem is

know in advance, it is good to explore the FPE-based

implementation.

5. Experimental results

5.1. Setup

The experiments in this section employed IEEE754 double-

precision arithmetic and were carried out in two different

clusters:

� The MareNostrum4 (MN4) supercomputer at Barce-

lona Supercomputing Center (BSC): This platform con-

sists of SD530 Compute Racks with an Intel Omni-Path

high performance network interconnect. Each node

comprises two 24-core Intel Xeon Platinum 8160 pro-

cessors (2.10 GHz) and 96 Gbytes of DDR4 RAM. The

platform runs the SuSE Linux Enterprise Server oper-

ating system. The codes in this platform were compiled

using GCC v7.2.0, Intel MPI v2018.1, and MKL

v2017.4.

� The Tintorrum cluster at Universitat Jaume I: This is a

8-node cluster, where each node is equipped with two

8-core Intel Xeon(R) E5-2630v3 processors (Haswell-

EP) (for a total of 128 cores), running at 2.4 GHz, with

20 MBytes of L3 on-chip cache (LLC or last level of

cache), and with 64 GBytes of DDR3 RAM. The oper-

ating system running in the cluster is Linux version

2.6.32-642.4.2.el6.centos.plus.x86_64. The codes were

compiled with GCC v5.3.0, OpenMPI v1.10.2, and

Intel MKL v2017.1.

For the experimental analysis, we leveraged a sparse

s.p.d. coefficient matrix arising from the finite-difference

method of a 3D Poisson’s equation with 27 stencil points.

The fact that the vector involved in the SPMV kernel has to

be replicated in all MPI ranks constrains the size of the

largest problem that can be solved. Given that the theore-

tical cost of PCG is tc � 2nnzþ 7n floating-point
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arithmetic operations, where nnz denotes the number of

nonzeros of the original matrix and its size n, the execution

time of the method is usually dominated by that of the

SPMV kernel. Therefore, in order to analyze the weak scal-

ability of the method, we maintain the number of nonzero

entries per node. For this purpose, we modified the original

matrix, transforming it into a band matrix, where the lower

and upper bandwidths (bandL and bandU, respectively)

depend on the number of nodes employed in the experiment

as follows:

bandL ¼ bandU ¼ 100� #nodes )

nnz ¼ ðbandLþ bandU þ 1Þ � n:

With 8 nodes in Tintorrum and 16 in MN4, the band-

width ranges between 100 and 800 in the first platform, and

from 100 to 1,600 in the second one. With this approach we

can then maintain the number of rows/columns of the

matrix equal to n ¼ 4,000,000, while increasing its band-

width and, therefore, the computational workload propor-

tionally to the hardware resources, as required in a weak

scaling experiment.

The right-hand side vector b in the iterative solvers was

always initialized to the product of A with a vector contain-

ing ones only; and the PCG iteration was started with the

initial guess x0 ¼ 0. The parameter that controls the con-

vergence of the iterative process was set to 10�8.

5.2. Performance evaluation

We analyze the performance of two reproducible versions

of the PCG algorithm parallelized with MPI: one that relies

on the ExBLAS approach, and an alternative variant that is

based on floating-point expansions (FPEs) of size eight

with the early-exit technique. Hereafter, we will refer to

them as Exblas and Opt (or FPE8EE), accordingly. Our

experiments evaluate the strong and weak scaling of these

reproducible implementations compared against the regular

(nondeterministic) version of PCG; all three versions are

implemented with MPI þ OpenMP tasks.

We next analyze the performance of the three imple-

mentations in the aforementioned clusters. On the one

hand, in order to assess the strong scalability, we fix the

matrix size to n ¼ 16,000,000 and the size of the upper and

lower bandwidth to 100, as we increase the number of

cores. On the other hand, in order to analyze the weak

scalability, we proceed as explained earlier, fixing the

matrix size to n ¼ 4,000,000 and increasing the bandwidth

from 100 to 100� mnodes (with mnodes ¼ 16 in MN4 and

mnodes ¼ 8 in Tintorrum).

Table 2 reports the total execution time (averaged for 5

different executions) of the different MPI þ OpenMP tasks

PCG solvers on both platforms, varying the number of

cores (from 48 to 768 in MN4 and from 16 to 128 in

Tintorrum) as we maintain the problem size. We tested

different computations of MPI processes per node and

OpenMP threads per process: the best performing in

MN4 is 8 MPI process with 6 OpenMP threads each, and

the optimum combination on Tintorrum is 8 MPI process

with 2 OpenMP threads each. The weak scaling experiment

offers notable results, as, when executing the algorithms in

more than one node (up to 48 cores in MN4 and up to 16

cores on Tintorrum) while increasing proportionally the

problem, the execution time is maintained. The executions

on one node show a different behavior because the com-

munication is in general faster as it entails no inter-node

communication. Notably, these extra (local) operations of

both ExBLAS and Opt implementations have a positive

effect on scalability on the larger node count due to better

ratio of computations to communication compared with the

Table 2. Timings of different implementations of the preconditioned conjugate gradient method on MN4 and Tintorrum.

Execution time in seconds of the implementations in MN4

Number
Weak scaling Strong scaling

of cores Regular Exblas Opt Regular Exblas Opt

48 3.5349Eþ00 8.8568Eþ00 7.7153Eþ00 1.3280Eþ01 3.5312Eþ01 2.9730Eþ01
96 3.1697Eþ00 5.9492Eþ00 5.4720Eþ00 7.6761Eþ00 1.8550Eþ01 1.6142Eþ01
192 2.9610Eþ00 4.7935Eþ00 4.5801Eþ00 5.1802Eþ00 1.0523Eþ01 9.3799Eþ00
384 2.8018Eþ00 3.9885Eþ00 3.8810Eþ00 3.9321Eþ00 6.5620Eþ00 6.0571Eþ00
768 3.5905Eþ00 4.7965Eþ00 4.7348Eþ00 3.6662Eþ00 5.0488Eþ00 4.7846Eþ00

Execution time in seconds of the implementations on Tintorrum

Number
Weak scaling Strong scaling

of cores Regular Exblas Opt Regular Exblas Opt

16 8.3203Eþ00 1.4222Eþ01 1.3014Eþ01 3.2747Eþ01 5.7285Eþ01 5.1238Eþ01
32 1.6787Eþ01 2.2833Eþ01 2.1898Eþ01 4.8481Eþ01 7.0335Eþ01 6.8607Eþ01
64 1.8877Eþ01 2.1114Eþ01 2.0992Eþ01 5.8668Eþ01 7.2928Eþ01 7.1930Eþ01
128 1.8322Eþ01 2.0331Eþ01 2.0156Eþ01 6.4591Eþ01 6.8174Eþ01 6.7651Eþ01
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original version. The behavior of the strong scaling experi-

ment could be expected for a parallel algorithm dealing

with a sparse linear algebra operation. This experiment in

particular reports an important increase of the overhead

when the number of nodes becomes large as the commu-

nication cost then dominates the execution time. But, the

overhead of the reproducible versions decreases due to the

favorable ratio between computations and communication.

Unfortunately, we cannot evaluate a larger problem to

increase the weight of the computational cost, as the prob-

lem dimension is constrained by the node memory

capacity.

Figure 4 reports the total execution time (averaged for 5

different executions) of the reproducible MPI PCG solvers

for the two clusters normalized with respect to the execu-

tion time of the regular MPI version, when we vary the

Figure 4. Analysis of the strong (top) and weak (bottom) scalability of the two reproducible versions of the MPIþOpenMP tasks PCG;
the time is normalized with respect to the regular nondeterministic MPI version.

Table 3. Accuracy and reproducibility comparison on the intermediate and final residual against MPFR for a matrix with the

condition number of 1012. The matrix is generated following the procedure from Section 5.1 with n ¼ 4,019,679 (1593) and the
bandwidth of size 200.

Residual

Iteration MPFR Original 1 core Original 48 cores Exblas & FPE8EE

0 0x1.19f179eb7f032pþ49 0x1.19f179eb7f03 3pþ49 0x1.19f179eb7f03 3pþ49 0x1.19f179eb7f032pþ49
2 0x1.f86089ece9f75pþ38 0x1.f86089ece 5bd4pþ38 0x1.f86089ece af76pþ38 0x1.f86089ece9f75pþ38
9 0x1.fc59a29d329ffpþ28 0x1.fc59a29d3 599apþ28 0x1.fc59a29d32 d1bpþ28 0x1.fc59a29d329ffpþ28
10 0x1.74f5ccc211471pþ22 0x1.74f5ccc 1d03cbpþ22 0x1.74f5ccc2 01246pþ22 0x1.74f5ccc211471pþ22
. . . . . . . . . . . . . . .
40 0x1.7031058eb2e3ep-19 0x1.7031058 dd6bcfp-19 0x1.7031058e af4c2p-19 0x1.7031058eb2e3ep-19
42 0x1.4828f76bd68afp-23 0x1.4828f76 d1aa3p-23 0x1.4828f76bd a71ap-23 0x1.4828f76bd68afp-23
45 0x1.8646260a70678p-26 0x1.8646260a 2dae8p-26 0x1.8646260a 6da06p-26 0x1.8646260a70678p-26
47 0x1.13fa97e2419c7p-33 0x1.13fa97e 1e76bfp-33 0x1.13fa97e24 0f7cp-33 0x1.13fa97e2419c7p-33
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number of cores (from 48 to 768 in MN4 and from 16 to

128 in Tintorrum). Specifically, in the two top plots we

present the strong scaling evaluation. In these graphs, we

can observe that the difference of both versions with

respect to the regular one is higher on a small number of

cores, and it decreases with the core count. We observe that

the overhead of both the Exblas and Opt implementations

compared with the regular version is smooth and decreas-

ing: from 2.66x and 2.24x on the single node to 37.7% and

30.5% on 16 nodes on MN4 for Exblas and Opt, respec-

tively; and, on Tintorrum from 74.9% and 56.5% on the

single node to 5.6% and 4.7% on 8 nodes for Exblas and

Opt, accordingly. Moreover, the overhead between Exblas

and Opt versions decreases, e.g. from 18% to 6% in MN4,

on the large core count: this is due to very similar imple-

mentations of both since Exblas underneath relies upon

FPE8EE for the OpenMP DOT products. Note that such

difference is much larger for the pure MPI implementation

Iakymchuk et al. (2019a).

The two bottom graphs in Figure 4 expose the weak

scaling evaluation, where we set the number of nonzeros

of the sparse matrix to be roughly proportional to the num-

ber of cores, increasing the size of the band of the matrix, as

discussed in Section 5.1. These results show that both

versions offer similar performance to the baseline on the

large number of cores. For instance, the overheads are

33.70% and 31.75% for the Exblas and Opt implementa-

tions in MN4, respectively, and only 11% and 10% for

Exblas and Opt on Tintorrum, accordingly. As in the strong

scaling analysis, the Opt version outperforms the Exblas

implementation. If we compare the results in both clusters,

we can observe that they are more stable in Tintorrum

because the number of cores per node is smaller in this

platform than in MN4.

5.3. Accuracy and reproducibility evaluation

In addition to the performance results, we report also the

results of the accuracy and reproducibility evaluation. For

that, we develop a generator of ill-conditioned matrices.

This generator scales the first row and the first column of

the matrix so that the DOT product determines the condition

number of the matrix. Additionally, we derive a sequential

version of the code that relies on the GNU Multiple Preci-

sion Floating-Point Reliably (MPFR) library Fousse et al.

(2007)—a C library for multiple (arbitrary) precision

floating-point computations on CPUs—as a highly accurate

reference implementation. This implementation uses 2,048

Table 4. Evaluation of different MPI þ OpenMP tasks implementations of the PCG method using test matrices from the SuiteSparse
matrix collection on one MareNostrum4’s node with eight MPI processes and six OpenMP threads per process.

Iterations Direct error Time [secs]

Matrix Nonzeros condðAÞ Orig Opt&ExBLAS Orig Opt&ExBLAS Orig Opt Exblas

plat1919 32,399 2.22eþ18 28200 28347 0x1.d1fd2948ac992pþ4 0x1.d1fd1980ddc3dpþ4 2.89eþ00 5.79eþ00 6.74eþ00
msc01050 26,198 9.00eþ15 1459 1441 0x1.fe62a1a8f70acp-7 0x1.c06963286be9ap-7 1.35e-01 2.27e-01 2.48e-01
mhd4800b 27.520 1.03eþ14 32 32 0x1.171f2d2a7c15dp-7 0x1.171f2cf90e554p-7 3.76e-03 1.10e-02 1.30e-02
olafu 1,015,156 7.61eþ11 43046 42342 0x1.4683bc1ddab86p-28 0x1.3c603001a3c8fp-28 3.54eþ01 6.84eþ01 7.60eþ01
gyro_k 1,021,159 1.10eþ09 16064 16075 0x1.7f300f81c65c7p-26 0x1.7ef8863fde778p-26 1.41eþ01 2.78eþ01 3.10eþ01
bcsstk28 219,024 6.28eþ09 5592 5483 0x1.dd4e900472e3dp-31 0x1.ba21beeb93c43p-31 1.25eþ00 2.51eþ00 2.85eþ00
bcsstk13 83,883 5.64eþ08 2571 2571 0x1.03a9e5339d79fp-34 0x1.5e81334a6997bp-34 3.66e-01 6.47e-01 7.37e-01
sts4098 72,356 3.56eþ07 666 668 0x1.ad954060aba53p-38 0x1.5a2eda56201fbp-38 8.87e-02 2.28e-01 2.61e-01
_bus 1,666 3.89eþ06 410 410 0x1.22befca9188e3p-35 0x1.b83293969f70bp-36 3.29e-02 4.36e-02 5.05e-02
msc04515 97,707 4.78eþ05 4883 4885 0x1.41d64ef6a77bfp-32 0x1.4b0c4d82346dap-32 6.85e-01 1.80eþ00 2.07eþ00
bcsstk27 56,126 1.49eþ04 331 331 0x1.3f45a221626fdp-40 0x1.2b65be5099a69p-40 3.66e-02 5.94e-02 6.60e-02

Table 5. Evaluation of different MPI þ OpenMP tasks implementations of the PCG method using test matrices from the SuiteSparse
matrix collection on one Tintorrum’s node with four MPI processes and four OpenMP threads per process.

Iterations Direct error Time [secs]

Matrix Nonzeros condðAÞ Orig Opt&ExBLAS Orig Opt&ExBLAS Orig Opt Exblas

plat1919 32,399 2.22eþ18 29133 28347 0x1.d1fccb48b0708pþ4 0x1.d1fd1980ddc3dpþ4 2.21eþ00 6.07eþ00 7.65eþ00
msc01050 26,198 9.00eþ15 1441 1441 0x1.20ef1ec5aba0fp-6 0x1.c06963286be9ap-7 1.07e-01 2.26e-01 2.74e-01
mhd4800b 27,520 1.03eþ14 32 32 0x1.171f2d405896bp-7 0x1.171f2cf90e554p-7 4.35e-02 1.06e-01 8.98e-02
olafu 1,015,156 7.61eþ11 44309 42342 0x1.580f68bcf7c59p-28 0x1.3c603001a3c8fp-28 5.80eþ01 1.10eþ02 1.28eþ02
gyro_k 1,021,159 1.10eþ09 16623 16075 0x1.70c410f76c1f3p-26 0x1.7ef8863fde778p-26 2.12eþ01 4.24eþ01 4.98eþ01
bcsstk28 219,024 6.28eþ09 5485 5483 0x1.b33c0d0a65819p-31 0x1.ba21beeb93c43p-31 1.59eþ00 3.50eþ00 4.17eþ00
bcsstk13 83,883 5.64eþ08 2554 2571 0x1.1f45539d3ad76p-34 0x1.5e81334a6997bp-34 3.87e-01 8.04e-01 9.58e-01
sts4098 72,356 3.56eþ07 666 668 0x1.75b26e5cc575ep-38 0x1.5a2eda56201fbp-38 1.02e-01 3.00e-01 3.69e-01
_bus 1,666 3.89eþ06 409 410 0x1.8a70c6145af0bp-33 0x1.b83293969f70bp-36 1.76e-02 3.31e-02 4.14e-02
msc04515 97,707 4.78eþ05 5138 4885 0x1.318ee7cc28729p-32 0x1.4b0c4d82346dap-32 8.34e-01 2.43eþ00 2.98eþ00
bcsstk27 56,126 1.49eþ04 331 331 0x1.287d86ae5b307p-40 0x1.2b65be5099a69p-40 3.34e-02 6.53e-02 7.81e-02
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bits of accuracy for computing the DOT product (192 bits for

internal product of two floating-point numbers) and per-

forms correct rounding of the computed result to double

precision.

Table 3 reports the intermediate and final residual on

each iteration of the PCG solver for the matrix with the

number of rows/columns equal to n¼ 4,019,679 (1593), the

bandwidth of size 200, and the condition number of 1012.

The results are exposed with all digits in hexadecimal. For

this test, the tolerance was set to 10�8 and it took 47 itera-

tions for all 4 implementations to converge under this accu-

racy requirement. We used one node of MN4 with 48

processes each pinned to one core. We present only few

iterations, but the difference is present in all iterations. The

ExBLAS and Opt implementations deliver both accurate

and reproducible results that are identical with the MPFR

library. Note that these results are identical to the ones from

the pure MPI implementations in Iakymchuk et al. (2019a)

and only the results of the original code differ. The original

code shows the difference from one digit on the initial

iteration and up to 5 digits on the 45th iteration on 48 cores

(8 MPI processes with 6 OpenMP threads per each). We

also add the results of the original code on one core/process

to highlight the reproducibility issue. To show these results,

we merge the two columns of the ExBLAS and Opt results

as they are identical. We assume that this discrepancy in

accuracy and reproducibility becomes larger at scale (more

nodes) due to the stronger impact of the topology and

reduction trees.

5.4. Evaluation using the SuiteSparse matrix
collection

We conduct a set of tests using real cases from the Suite-

Sparse matrix collection. We select matrices with various

condition numbers starting from 1:49eþ 04 up to

2:22eþ 18,3 with as many as one million nonzero ele-

ments. Table 4 presents our experimental results on a single

node using eight MPI processes and six OpenMP threads

per process on the MareNostrum4 cluster. For each test

matrix, we report the number of iterations required to reach

the tolerance of 10�8 for residual, the direct error computed

as in Section 3.5.1 Golub and Loan (2013), and the total

execution time. We have selected the direct error instead of

residual since it is known that smaller residual does not

imply higher accuracy, meaning solutions with smaller

residual might be less accurate. This is confirmed for the

first three matrices for which the residual suffices the

Table 6. Evaluation of different pure MPI implementations Iakymchuk et al. (2019a) of the PCG method using test matrices from the
SuiteSparse matrix collection on one MareNostrum4’s node with 48 MPI processes.

Iterations Direct error Time [secs]

Matrix Nonzeros condðAÞ Orig Opt&ExBLAS Orig Opt&ExBLAS Orig Opt Exblas

plat1919 32,399 2.22eþ18 28404 28347 0x1.d1fd13459efb2pþ4 0x1.d1fd1980ddc3dpþ4 2.09eþ00 7.25eþ00 1.15eþ01
msc01050 26,198 9.00eþ15 1449 1441 0x1.1e960e3dd96adp-6 0x1.c06963286be9ap-7 1.18e-01 3.51e-01 4.95e-01
mhd4800b 27,520 1.03eþ14 32 32 0x1.171f2d513bf1fp-7 0x1.171f2cf90e554p-7 5.17e-03 9.00e-03 2.16e-02
olafu 1,015,156 7.61eþ11 44872 42342 0x1.284b2460347acp-28 0x1.3c603001a3c8fp-28 1.38eþ01 2.22eþ01 7.77eþ01
gyro_k 1,021,159 1.10eþ09 16577 16075 0x1.76957c0ecf952p-26 0x1.7ef8863fde778p-26 5.29eþ00 8.71eþ00 3.14eþ01
bcsstk28 219,024 6.28eþ09 5736 5483 0x1.e9c64a28a93dfp-31 0x1.ba21beeb93c43p-31 8.43e-01 1.70eþ00 3.69eþ00
bcsstk13 83,883 5.64eþ08 2571 2571 0x1.03a9e5339d79fp-34 0x1.5e81334a6997bp-34 2.32e-01 5.07e-01 3.01eþ00
sts4098 72,356 3.56eþ07 666 668 0x1.ad954060aba53p-38 0x1.5a2eda56201fbp-38 6.44e-02 1.85e-01 1.47eþ00
_bus 1,666 3.89eþ06 410 410 0x1.98d21a409a23cp-36 0x1.b83293969f70bp-36 4.47e-02 9.29e-02 1.20e-01
msc04515 97,707 4.78eþ05 4883 4885 0x1.41d64ef6a77bfp-32 0x1.4b0c4d82346dap-32 4.89e-01 1.47eþ00 1.18eþ01
bcsstk27 56,126 1.49eþ04 331 331 0x1.3f45a221626fdp-40 0x1.2b65be5099a69p-40 2.02e-02 4.50e-02 1.22e-01

Table 7. Evaluation of different pure MPI implementations Iakymchuk et al. (2019a) of the PCG method using test matrices from the
SuiteSparse matrix collection on one Tintorrum’s node with 16 MPI processes.

Iterations Direct error Time [secs]

Matrix Nonzeros condðAÞ Orig Opt&ExBLAS Orig Opt&ExBLAS Orig Opt Exblas

plat1919 32,399 2.22eþ18 28225 28347 0x1.d1fd2b1f22f89pþ4 0x1.d1fd1980ddc3dpþ4 1.05eþ00 2.27eþ00 1.21eþ01
msc01050 26,198 9.00eþ15 1440 1441 0x1.91eb8c4cf549ep-7 0x1.c06963286be9ap-7 5.85e-02 1.01e-01 4.14e-01
mhd4800b 27,520 1.03eþ14 32 32 0x1.171f2d071bbecp-7 0x1.171f2cf90e554p-7 2.05e-03 4.82e-03 3.28e-02
olafu 1,015,156 7.61eþ11 44840 42342 0x1.73ee2c0ee4f91p-28 0x1.3c603001a3c8fp-28 2.08eþ01 3.39eþ01 1.55eþ02
gyro_k 1,021,159 1.10eþ09 16518 16075 0x1.7c04191d8b8d9p-26 0x1.7ef8863fde778p-26 8.31eþ00 1.38eþ01 6.28eþ01
bcsstk28 219,024 6.28eþ09 5640 5483 0x1.d8e49bef6a637p-31 0x1.ba21beeb93c43p-31 5.58e-01 1.06eþ00 5.46eþ00
bcsstk13 83,883 5.64eþ08 2337 2571 0x1.040b38e017aeep-34 0x1.5e81334a6997bp-34 1.36e-01 2.68e-01 1.23eþ00
sts4098 72,356 3.56eþ07 668 668 0x1.77b31324422c1p-38 0x1.5a2eda56201fbp-38 4.36e-02 9.92e-02 6.02e-01
_bus 1,666 3.89eþ06 410 410 0x1.f52f8f4c274dp-37 0x1.b83293969f70bp-36 1.21e-02 1.63e-02 5.78e-02
msc04515 97,707 4.78eþ05 4874 4885 0x1.2dfe5e95c1703p-32 0x1.4b0c4d82346dap-32 3.26e-01 7.56e-01 4.80eþ00
bcsstk27 56,126 1.49eþ04 331 331 0x1.2c11a8f939c1dp-40 0x1.2b65be5099a69p-40 1.45e-02 2.53e-02 1.04e-01
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tolerance but the direct error is still large. The direct error

as well as the number of iterations are identical for both

ExBLAS and Opt variants, hence we merge these columns.

Our reproducible variants require a smaller number of

iterations than the original version for the msc01050, olafu,

and bcsstk28 matrices. For instance, for the olafu matrix

(1,015,156 nonzero elements and condition number

7:61eþ 11), both ExBLAS and Opt variants require

42,342 iterations, while the original version needs 43,046

iterations. For a few cases, our reproducible variants may

perform slightly more iterations than the non-reproducible

variants due to the differences in the accumulation of

rounding errors arising form distinct optimizations in the

codes. The overhead of our reproducible variants can be as

low as 32:5 % for the 494_bus matrix but can reach 3:46�
for the sts4098 matrix. This overhead is expected and is

inline with the pattern from Figure 4, where the largest

overhead is observed on a single node. Moreover, we also

run tests using eight MPI processes and two OpenMP

threads per process—the Opt and ExBLAS results are again

identical in terms of the number of iterations, residuals, and

direct errors.

Furthermore, we conduct similar experiments on the

Tintorrum cluster. Table 5 presents the results of these

experiments. There, we also use one node but four MPI

processes and four OpenMP threads per process. These

results show a similar trend to that of MareNostrum4:

smaller number of iterations of the ExBLAS and Opt ver-

sions for plat1919, olafu, gyro_k, bcsstk28, and msc04515

matrices; the overhead of reproducible versions as small as

88:1 % for the 494_bus matrix but may also grow up to few

times. Notably, both ExBLAS and Opt versions deliver

identical results, excluding timings, on the MareNostrum4

and Tintorrum clusters.

In addition, we conduct experiments using the pure MPI

versions of the Reproducible Preconditioned Conjugate

Gradient Iakymchuk et al. (2019a) on the MareNostrum4

and Tintorrum clusters, see Tables 6 and 7. We observe that

the number of iterations, residuals, direct errors, the final

error, and vector-solutions are identical to those produced

by the MPIþOpenMP tasks versions. Hence, our reprodu-

cible strategies ensure cross-cluster reproducibility of PCG

implemented with pure MPI as well as the hybrid MPI þ
OpenMP tasks models.

6. Related work

To enhance reproducibility, Intel proposed the

“Conditional Numerical Reproducibility” (CNR) option

in its Math Kernel Library (MKL). Although CNR guaran-

tees reproducibility, it does not ensure correct rounding,

meaning the accuracy is arguable. Additionally, the cost

of obtaining reproducible results with CNR is high. For

instance, for large arrays the MKL’s summation with CNR

was almost 2x slower than the regular MKL’s summation

on the Mesu cluster hosted at the Sorbonne University

Collange et al. (2015).

Demmel and Nguyen implemented a family of algo-

rithms—that originate from the works by Rump, Ogita, and

Oishi Rump et al. (2010, 2008b, a)—for reproducible sum-

mation in floating-point arithmetic Demmel and Nguyen

(2013, 2015). These algorithms always return the same

answer. They first compute an absolute bound of the sum

and then round all numbers to a fraction of this bound. In

consequence, the addition of the rounded quantities is exact,

however the computed sum using their implementations

with two or three bins is not correctly rounded. Their results

yielded roughly 20 % overhead on 1024 processors (CPUs

only) compared to the Intel MKL dasum(), but it shows 3:4
times slowdown on 32 processors (one node). Ahrens,

Nguyen, and Demmel extended their concept to few other

reproducible BLAS routines, distributed as the ReproBLAS

library,4 but only with parallel reproducible reduction.

Furthermore, the ReproBLAS effort was extended to repro-

ducible tall-skinny QR Nguyen and Demmel (2015).

The other approach to ensure reproducibility is called

ExBLAS, which is initially proposed by Collange, Defour,

Graillat, and Iakymchuk in Collange et al. (2015). ExBLAS

is based on combining long accumulators and floating-point

expansions in conjuction with error-free transformations.

This approach is presented in Section 2.1. Collange et al.

showed Collange et al. (2015) that their algorithms for repro-

ducible and accurate summation have 8 % overhead on 512

cores (32 nodes) and less than 2 % overhead on 16 cores (one

node). While ExSUM covers wide range of architectures as

well as distributed-memory clusters, the other routines pri-

marily target GPUs. Exploiting the modular and hierarchical

structure of linear algebra algorithms, the ExBLAS approach

was applied to construct reproducible LU factorizations with

partial pivoting Iakymchuk et al. (2019b).

Recently, Mukunoki and Ogita presented their approach

to implement reproducible BLAS, called OzBLAS Muku-

noki et al. (2020), with tunable accuracy. This approach is

different from both ReproBLAS and ExBLAS as it does not

require to implement every BLAS routine from scratch but

relies on high-performance (vendor) implementations.

Hence, OzBLAS implements the Ozaki scheme Ozaki

et al. (2012) that follows the fork-join approach: the matrix

and vector are split (each element is sliced) into sub-

matrices and sub-vectors for secure products without over-

flows; then, the high-performance BLAS is called on each

of these splits; finally, the results are merged back using,

for instance, the NearSum algorithm. Currently, the

OzBLAS library includes dot product, matrix-vector prod-

uct (gemv), and matrix–matrix multiplication (gemm).

These algorithmic variants and their implementations on

GPUs and CPUs (only dot) reassure reproducibility of the

BLAS kernels as well as make the accuracy tunable up to

correctly rounded results.

7. Conclusions and future work

In this work, we addressed the reproducibility of iterative

solvers for sparse linear systems using a representative
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instance of the Preconditioned Conjugate Gradient method.

We first analyzed the hybrid MPI þ OpenMP tasks imple-

mentation of the PCG method and identified two major

sources of nondeterministic behavior, namely the DOT prod-

uct and compiler optimizations. The latter may change the

order of operations or replace some of them in favor of the

fused multiply–add (fma) operation. For reproducible and

double-layered distributed DOT product, we leveraged the

ExBLAS approach as well as proposed an alternative light-

weight variant based solely on FPEs. Both strategies split

the MPI_Allreduce routine into the combination of

MPI_Reduce and MPI_Bcast, and perform the intra-

node DOT product with FPEs. To tackle compiler interfer-

ence in computations, we reconstruct computations as well

as explicitly invoke fma instructions. Both approaches

deliver identical results on two clusters to ensure reprodu-

cibility of PCG in the number of iterations, the intermediate

and final residuals, the direct errors, as well as the vector-

solution on the example of a 3D Poisson’s equation with 27

stencil points as well as several test matrices from the Sui-

teSparse matrix collection. On a single node, the FPE- and

ExBLAS-based reproducible versions of PCG show the

maximum overhead of 2.24x and 2.66x, respectively, due

to additional memory allocation and computations. When

the communication starts to dominate the execution time,

both versions show very low overhead compared with the

original nondeterministic implementation: 37.70% for

ExBLAS and 30.50% for Opt on 768 cores of MareNos-

trum4; 5.6% for ExBLAS and 4.6% for Opt on 128 cores

of Tintorrum. This is a solid argument in favor of the

reproducible PCG at scale. The code is available at

https://github.com/riakymch/ReproCG_MPI_OMP.

Our study promotes the adoption of reproducibility by

design through the proper choice of the underlying libraries

as well as a moderate programmability effort. For instance,

a brief guidance would be 1) for fundamental numerical

computations, to leverage reproducible underlying libraries

such as ExBLAS, ReproBLAS, or OzBLAS; and 2) analyze

the algorithm and make it reproducible through eliminating

any uncertainties that may violate associativity such as

reductions and use/ nonuse of fma s. Additionally, we

argue the need for the bit-wise reproducible and

correctly-rounded results for iterative solvers as, neverthe-

less, they will be enhanced during subsequent iterations as

we do not reach the desired tolerance and, thus, do not

exploit at full the obtained bit-wise results.

Our future work aims to conduct a deeper analysis of the

lightweight approach to support our experimental results.

One idea is to bind the length of FPEs to the condition

number of the input problem and/or its dynamic range

similarly to Carson and Higham (2018) for the mixed-

precision direct linear solver.
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Notes

1. ExBLAS repository: https://github.com/riakymch/

exblas.

2. This and the other case of y ¼ a � xþ b � y are analyzed

in more details in Wiesenberger et al. (2019).

3. In practice, selecting coefficient matrices for the linear

systems for which condðAÞ � 1eþ 12 would have been

more realistic due to the limits of the double precision

arithmetic.

4. http://bebop.cs.berkeley.edu/reproblas/
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