
Brief Contributions__

Accurate Floating-Point Product
and Exponentiation

Stef Graillat

Abstract—Several different techniques and softwares intend to improve the

accuracy of results computed in a fixed finite precision. Here, we focus on a

method to improve the accuracy of the product of floating-point numbers. We show

that the computed result is as accurate as if computed in twice the working

precision. The algorithm is simple since it only requires addition, subtraction, and

multiplication of floating-point numbers in the same working precision as the given

data. Such an algorithm can be useful for example to compute the determinant of a

triangular matrix and to evaluate a polynomial when represented by the root

product form. It can also be used to compute the integer power of a floating-point

number.

Index Terms—Accurate product, exponentiation, finite precision, floating-point

arithmetic, faithful rounding, error-free transformations.

Ç

1 INTRODUCTION

IN this paper, we present fast and accurate algorithms to compute
the product of floating-point numbers. Our aim is to increase the
accuracy at a fixed precision. We show that the results have the same
error estimates as if computed in twice the working precision and
then rounded to working precision. Then, we address the problem
on how to compute a faithfully rounded result, that is to say, the
computed result is equal to the exact result if the latter is a floating-
point number and otherwise is one of the two adjacent floating-
point numbers of the exact result.

This paper was motivated by papers [1], [2], [3], [4], and [5],
where similar approaches are used to compute summation, dot
product, polynomial evaluation, and integer power.

The applications of our algorithms are multiple. One of the
examples frequently used in Sterbenz’s book [6] is the computation
of the product of some floating-point numbers. Our algorithms can
be used, for instance, to compute the determinant of a triangle
matrix

T ¼
t11 t12 � � � t1n

t22 t2n
. .

. ..
.

tnn

2
664

3
775:

Indeed, the determinant of T is

detðT Þ ¼
Yn
i¼1

tii:

Another application is for evaluating a polynomial when repre-
sented by the root product form pðxÞ ¼ an

Qn
i¼1ðx� xiÞ. We can

also apply our algorithms to compute the integer power of a
floating-point number.

The rest of this paper is organized as follows: In Section 2, we
recall notations and auxiliary results that will be needed in the
sequel. We present the floating-point arithmetic and the so-called
error-free transformations. In Section 3, we present a classic
algorithm to compute the product of floating-point numbers. We
give an error estimate as well as a validated error bound. We also
present a new compensated algorithm together with an error
estimate and a validated error bound. We show that under mild
assumptions, our algorithm gives a faithfully rounded result. We
also present an accurate algorithm using a double-double library
and we compare it with our compensated algorithm. In Section 4,
we apply our algorithm to compute the power of a floating-point
number. We propose two different algorithms: one with our
compensated algorithm, the other one with the use of a double-
double library.

2 NOTATION AND AUXILIARY RESULTS

2.1 Floating-Point Arithmetic

Throughout this paper, we assume to work with a floating-point
arithmetic adhering to IEEE 754 floating-point standard in round-
ing to nearest [7]. We assume that no overflow nor underflow
occur. The set of floating-point numbers is denoted by IF, the
relative rounding error by eps. For IEEE 754 double precision, we
have eps ¼ 2�53 and for single precision eps ¼ 2�24.

We denote by flð�Þ the result of a floating-point computation,
where all operations inside parentheses are done in floating-point
working precision. Floating-point operations in IEEE 754 satisfy [8]

flða � bÞ ¼ ða � bÞð1þ "1Þ

¼ ða � bÞ=ð1þ "2Þ for � ¼ fþ;�; �; =g and

j"� j � eps for � ¼ 1; 2:

ð1Þ

2.2 Error-Free Transformations

One can notice that a � b 2 IR and flða � bÞ 2 IF, but we usually do not
have a � b 2 IF. It is known that for the basic operations þ, �, �, the
approximation error of a floating-point operation is still a floating-
point number (see, for example, [9]):

x ¼ flða� bÞ) a� b ¼ xþ y with y 2 IF;
x ¼ flða � bÞ) a � b ¼ xþ y with y 2 IF:

ð2Þ

These are error-free transformations of the pair ða; bÞ into the
pair ðx; yÞ.

Fortunately, the quantities x and y in (2) can be computed
exactly in floating-point arithmetic. For the algorithms, we use
Matlab-like notations.

For addition, we can use the following algorithm by Knuth [10,
Thm. B, p. 236].

Algorithm 1 (Knuth [10]): Error-free transformation of the sum of

two floating-point numbers

function ½x; y� ¼ TwoSumða; bÞ
x ¼ flðaþ bÞ
z ¼ flðx� aÞ
y ¼ flðða� ðx� zÞÞ þ ðb� zÞÞ
For the error-free transformation of a product, we first need to

split the input argument into two parts. Let p be given by eps ¼ 2�p

and define s ¼ dp=2e. For example, if the working precision is
IEEE 754 double precision, then p ¼ 53 and s ¼ 27. The following
algorithm by Dekker [9] splits a floating-point number a 2 IF into
two parts x and y such that

a ¼ xþ y and x and y nonoverlapping with jyj � jxj:

994 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 7, JULY 2009

. The author is with the Laboratoire LIP6, Département Calcul Scientifique,
Université Pierre et Marie Curie (Paris 6), 4 place Jussieu, F-75252 Paris
Cedex 05, France. E-mail: stef.graillat@lip6.fr.

Manuscript received 22 July 2007; revised 25 Aug. 2008; accepted 10 Sept.
2008; published online 5 Dec. 2008.
Recommended for acceptance by P. Kornerup, P. Montuschi, J.-M. Muller,
and E. Schwarz.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2007-07-0354.
Digital Object Identifier no. 10.1109/TC.2008.215.

0018-9340/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: UPMC - Universite Pierre et Marie Curie. Downloaded on June 3, 2009 at 07:56 from IEEE Xplore. Restrictions apply.

Algorithm 2 (Dekker [9]): Error-free split of a floating-point number

into two parts

function ½x; y� ¼ Splitða; bÞ
factor ¼ flð2s þ 1Þ
c ¼ flðfactor � aÞ
x ¼ flðc� ðc� aÞÞ
y ¼ flða� xÞ
With this function, an algorithm from Veltkamp (see [9]) makes it

possible to compute an error-free transformation for the product of
two floating-point numbers. This algorithm returns two floating-
point numbers x and y such that

a � b ¼ xþ y with x ¼ flða � bÞ:

Algorithm 3 (Veltkamp [9]): Error-free transformation of the product

of two floating-point numbers

function ½x; y� = TwoProductða; bÞ
x ¼ flða � bÞ
½a1; a2� ¼ SplitðaÞ
½b1; b2� ¼ SplitðbÞ
y ¼ flða2 � b2 � ðððx� a1 � b1Þ � a2 � b1Þ � a1 � b2ÞÞ
The following theorem summarizes the properties of algorithm

TwoProduct.

Theorem 1 (Ogita et al. [1]). Let a, b 2 IF and let x, y 2 IF such that

½x; y� ¼ TwoProductða; bÞ (Algorithm 3). Then,

a � b ¼ xþ y; x ¼ flða � bÞ; jyj � epsjxj; jyj � epsja � bj: ð3Þ

The algorithm TwoProduct requires 17 flops.

The TwoProduct algorithm can be rewritten in a very simple
way if a Fused-Multiply-and-Add ðFMAÞ operator is available on the
targeted architecture [11]. Some computers have an FMA operation
that enables a floating-point multiplication followed by an addition
to be performed as a single floating-point operation. The Intel IA-64
architecture, implemented in the Intel Itanium processor, has an
FMA instruction as well as the IBM RS/6000 and the PowerPC before
it and as the new Cell processor [12]. On the Itanium processor, the
FMA instruction enables a multiplication and an addition to be
performed in the same number of cycles than one multiplication or
one addition. As a result, it seems to be advantageous for speed as
well as for accuracy.

Theoretically, this means that for a, b, c 2 IF, the result of
FMAða; b; cÞ is the nearest floating-point number of a � bþ c 2 IR. The
FMA satisfies

FMAða; b; cÞ ¼ ða � bþ cÞð1þ "1Þ
¼ ða � bþ cÞ=ð1þ "2Þ with j"� j � eps for � ¼ 1; 2:

Due to the FMA, the TwoProduct algorithm can be rewritten as

follows, which costs only two flops:

Algorithm 4 (Ogita et al. [1]): Error-free transformation of the

product of two floating-point numbers using an FMA.

function ½x; y� ¼ TwoProductFMAða; bÞ
x ¼ a � b
y ¼ FMAða; b;�xÞ

3 ACCURATE FLOATING-POINT PRODUCT

In this section, we present a new accurate algorithm to compute the
product of floating-point numbers. In Section 3.1, we recall the
classic method and we give a theoretical error bound as well as a
validated computable error bound. In Section 3.2, we present our
new algorithm based on a compensated scheme together with a

theoretical error bound. In Section 3.3, we give sufficient conditions
on the number of floating-point numbers so as to get a faithfully
rounded result. In Section 3.4, we give a validated computable
error bound for our new algorithm. In Section 3.5, we present the
classic recursive algorithm for computing the product of floating-
point numbers but using internally a double-double library. This
makes it possible to achieve the same accuracy as the compensated
algorithm. Finally, in Section 3.6, we provide some numerical
experiments showing the performance of our compensated
algorithm.

3.1 Classic Method

The classic method for evaluating a product of n numbers

a ¼ ða1; a2; . . . ; anÞ

p ¼
Yn
i¼1

ai

is the following algorithm.

Algorithm 5: Product evaluation

function res ¼ ProdðaÞ
p1 ¼ a1

for i ¼ 2 : n

pi ¼ flðpi�1 � aiÞ
end

res ¼ pn
This algorithm requires n� 1 flops. Let us now analyze its

accuracy.
We will use standard notations and standard results for the

following error estimations (see [8]). The quantities �n are defined
as usual [8] by

�n :¼ neps

1� neps for n 2 IN:

When using �n, we implicitly assume that neps � 1. A forward
error bound is

ja1a2 � � � an � resj ¼ ja1a2 � � � an � flða1a2 � � � anÞj � �n�1ja1a2 � � � anj:
ð4Þ

Indeed, by induction,

res ¼ flða1a2 � � � anÞ ¼ a1a2 � � � anð1þ "2Þð1þ "3Þ � � � ð1þ "nÞ; ð5Þ

with j"ij � eps for i ¼ 2 : n. It follows from Lemma 3.1 in [8, p. 63]
that ð1þ "2Þð1þ "3Þ; . . . ; ð1þ "nÞ ¼ 1þ �n�1, where j�n�1j � �n�1.
We also have that ð1þ �kÞð1þ �jÞ ¼ ð1þ �kþjÞ.

It is shown in [13] that for a 2 IF, we have

ð1þ epsÞn � 1

ð1� epsÞn

� 1

1� neps and

jaj
1� neps � fl

jaj
1� ðnþ 1Þeps

� �
:

ð6Þ

We also have

ð1þ "2Þð1þ "3Þ � � � ð1þ "nÞres ¼ a1a2 � � � an;

and then it follows that

ja1a2 � � � an � resj � �n�1jresj:

If meps � 1 for m 2 IN, flðmepsÞ ¼ meps and flð1�mepsÞ ¼
1�meps. Therefore,

�m � ð1þ epsÞflð�mÞ: ð7Þ

IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 7, JULY 2009 995

Authorized licensed use limited to: UPMC - Universite Pierre et Marie Curie. Downloaded on June 3, 2009 at 07:56 from IEEE Xplore. Restrictions apply.

Hence,

ja1a2 � � � an � resj � ð1þ epsÞflð�n�1Þjresj;

and so

ja1a2 � � � an � resj � fl
�n�1jresj
1� 2eps

� �
:

The previous inequality gives us a validated error bound that
can be computed in pure floating-point arithmetic in rounding to
nearest.

3.2 Compensated Method

We present hereafter a compensated scheme to evaluate the
product of floating-point numbers, i.e., the error of individual
multiplication is somehow corrected. The technique used here is
based on the paper by Ogita et al. [1]. This technique using error-
free transformations have been widely used to provide some new
accurate algorithms in floating-point arithmetic (see [1] and [2] for
accurate sum and dot product and [3] and [4] for polynomial
evaluation). It was also recently used in [5] to accurately compute
the integer power of a floating-point number. We generalize the
work of Kornerup et al. [5] to the product of several floating-point
numbers.

Algorithm 6: Product evaluation with a compensated scheme

function res ¼ CompProdðaÞ
p1 ¼ a1

e1 ¼ 0

for i ¼ 2 : n

½pi; �i� ¼ TwoProductðpi�1; aiÞ
ei ¼ flðei�1ai þ �iÞ

end

res ¼ flðpn þ enÞ
This algorithm requires 19n� 18 flops if we use TwoProduct.

It only requires 3n� 2 flops if we use TwoProductFMA instead
of TwoProduct (if, of course, an FMA is available) and
ei ¼ FMAðei�1; ai; �iÞ instead of ei ¼ flðei�1ai þ �iÞ.

Algorithm 7: Product evaluation with a compensated scheme with

TwoProductFMA and FMA

function res ¼ CompProdFMAðaÞ
p1 ¼ a1

e1 ¼ 0

for i ¼ 2 : n

½pi; �i� ¼ TwoProductFMAðpi�1; aiÞ
ei ¼ FMAðei�1; ai; �iÞ

end

res ¼ flðpn þ enÞ
We will provide an error analysis only for Algorithm CompProd.

The error analysis for CompProdFMA is very similar to the one of
CompProd with little changes having to be done to take into account
the operation ei ¼ FMAðei�1; ai; �iÞ. This changes nearly nothing so
it is straightforward to modify the analysis to deal with it.

For error analysis, we note that

pn ¼ flða1a2 � � � anÞ and en ¼ fl
Xn
i¼2

�iaiþ1 � � � an

 !
:

We also have

p ¼ a1a2 � � � an ¼ flða1a2 � � � anÞ þ
Xn
i¼2

�iaiþ1 � � � an ¼ pn þ e; ð8Þ

where e ¼
Pn

i¼2 �iaiþ1 � � � an.

Before proving the main theorem, we will need a bound on the

individual error of the multiplication �i as a function of the

original data ai.
Suppose floating-point numbers �i 2 IF, 2 � i � n, are com-

puted by the following algorithm.

p1 ¼ a1

for i ¼ 2 : n

½pi; �i� ¼ TwoProductðpi�1; aiÞ
end

Then,

j�ij � epsð1þ �i�1Þja1 � � � aij for i ¼ 2 : n: ð9Þ

Indeed, from (1), it follows that

j�ij � epsjpij:

Moreover, pi ¼ flða1 . . . aiÞ so that from (4),

jpij � ð1þ �i�1Þja1 � � � aij:

Hence, j�ij � epsð1þ �i�1Þja1 � � � aij.
The following lemma enables us to bound the rounding errors

during the computation of the error during the full product.

Lemma 1. Suppose floating-point numbers ei 2 IF, 1 � i � n, are

computed by the following algorithm.

e1 ¼ 0

for i ¼ 2 : n

½pi; �i� ¼ TwoProductðpi�1; aiÞ
ei ¼ flðei�1ai þ �iÞ

end

Then,

en �
Xn
i¼2

�iaiþ1 � � � an

�����
����� � �n�1�2nja1a2 � � � anj:

Proof. First, one notices that en ¼ flð
Pn

i¼2ð�iaiþ1 � � � anÞÞ. We will

use the error counters described above. For n floating-point

numbers xi, it is easy to see that [8, chap. 4]

flðx1 þ x2 þ � � � þ xnÞ ¼x1ð1þ �n�1Þ þ x2ð1þ �n�1Þ
þx3ð1þ �n�2Þ þ � � � þ xnð1þ �1Þ:

This implies that

en ¼ fl
Xn
i¼2

ð�iaiþ1 � � � anÞ
 !

¼ flð�2a3 � � � anÞð1þ �n�2Þ
þ flð�3a4 � � � anÞð1þ �n�2Þ þ � � � þ flð�nÞð1þ �1Þ:

Furthermore, we have shown before that flða1a2 � � � anÞ ¼
a1a2 � � � anð1þ �n�1Þ. Consequently,

en ¼�2a3 � � � anð1þ �n�2Þð1þ �n�1Þ
þ�3a4 � � � anð1þ �n�3Þð1þ �n�1Þ þ � � � þ �nð1þ �1Þ:

A straightforward computation yields

en �
Xn
i¼2

�iaiþ1 � � � an

�����
����� � �2n�3

Xn
i¼2

j�iaiþ1 � � � anj:

996 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 7, JULY 2009

Authorized licensed use limited to: UPMC - Universite Pierre et Marie Curie. Downloaded on June 3, 2009 at 07:56 from IEEE Xplore. Restrictions apply.

From (9), we have j�ij � epsð1þ �i�1Þja1 � � � aij, and hence

en �
Xn
i¼2

�iaiþ1 � � � an

�����
����� � ðn� 1Þepsð1þ �n�1Þ�2n�3ja1a2 � � � anj:

Since epsð1þ �n�1Þ ¼ �n�1=ðn� 1Þ and �2n�3 � �2n, we obtain

the desired result. tu
One may notice that the computation of en is similar to the

Horner scheme. One could have directly applied a result on the

error of the Horner scheme [8, Eq. (5.3), p. 95].
We can finally state the main theorem.

Theorem 2. Suppose Algorithm 6 is applied to floating-point number

ai 2 IF, 1 � i � n, and set p ¼
Qn

i¼1 ai. Then,

jres� pj � epsjpj þ �n�2njpj: ð10Þ

Proof. The fact that res ¼ flðpn þ enÞ implies that res ¼ ð1þ "Þ
ðpnþenÞ with j"j � eps. So, it follows that

jres� pj ¼ flðpn þ enÞ � pj j ¼ ð1þ "Þðpn þ en � pÞ þ "pj j

¼
�����ð1þ "Þ pn þ

Xn
i¼2

�iaiþ1 � � � an � p
 !

þð1þ "Þ en �
Xn
i¼2

�iaiþ1 � � � an

 !
þ "p

�����
¼ ð1þ "Þðen �

Xn
i¼2

�iaiþ1 � � � anÞ þ "p
�����

����� by ð8Þ

� epsjpj þ ð1þ epsÞ en �
Xn
i¼2

�iaiþ1 � � � an

�����
�����

� epsjpj þ ð1þ epsÞ�n�1�2nja1a2 � � � anj:

Since ð1þ epsÞ�n�1 � �n, it follows that jres� pj � epsjpj þ
�n�2njpj. tu
It may be interesting to study the condition number of the

product evaluation. One defines

condðaÞ¼ lim
"!0

sup

�
ða1þ�a1Þða2þ�a2Þ � � � ðanþ�anÞ�a1a2 � � � anj j

"ja1a2 � � � anj

: j�aij�"jaij
�
:

A standard computation yields

condðaÞ ¼ n:

Corollary 1. Suppose Algorithm 6 is applied to floating-point number

ai 2 IF, 1 � i � n, and set p ¼
Qn

i¼1 ai 6¼ 0. Then,

jres� pj
jpj � epsþ �n�2n

n
condðaÞ:

In fact, if p 6¼ 0, we can rewrite (10) in the following form:

jres� pj
jpj � epsþ �n�2n:

Since �n�2n � 2n2eps2, for n not too large, it follows that �n�2n is

negligible compared to eps. As a consequence, the relative error

jres� pj=jpj is of the order of eps, that is to say, the result has

nearly full accuracy. We will show this in Section 3.3.

3.3 Faithful Rounding

We define the floating-point predecessor and successor of a real

number r satisfying minff : f 2 IRg < r < maxff : f 2 IFg by

predðrÞ : ¼ maxff 2 IF : f < rg and

succðrÞ : ¼ minff 2 IF : r < fg:

Definition 1. A floating-point number f 2 IF is called a faithful

rounding of a real number r 2 IR if

predðfÞ < r < succðfÞ:

We denote this by f 2 tuðrÞ. For r 2 IF, this implies that f ¼ r.

Faithful rounding means that the computed result is equal to the

exact result if the latter is a floating-point number and otherwise is

one of the two adjacent floating-point numbers of the exact result.

Lemma 2 (Rump et al. [2, Lemma 2.4]). Let r, � 2 IR and ~r :¼ flðrÞ.
Suppose that 2j�j < epsj~rj. Then, ~r 2 tuðrþ �Þ, that means ~r is a

faithful rounding of rþ �.

Let res be the result of CompProd. Then, we have p ¼ pn þ e and

res ¼ flðpn þ enÞ with e ¼
Pn

i¼2 �iaiþ1 � � � an. It follows that

p ¼ ðpn þ enÞ þ ðe� enÞ. This leads to the following lemma, which

gives a criterion to ensure that the result of CompProd is faithfully

rounded.
With the previous notations, if 2je� enj < epsjresj, then res is a

faithful rounding of p. Since we have je� enj � �n�2njpj and

ð1� epsÞjpj � �n�2njpj � jresj, a sufficient condition to ensure a

faithful rounding is

2�n�2njpj < eps ð1� epsÞjpj � �n�2njpjð Þ;

that is

�n�2n <
1� eps

2þ eps
eps:

Since �n�2n � 2ðnepsÞ2=ð1� 2nepsÞ2, a sufficient condition is

2
ðnepsÞ2

ð1� 2nepsÞ2
<

1� eps

2þ eps
eps;

which is equivalent to

neps

1� 2neps
<

ffi
ð1� epsÞeps
2ð2þ epsÞ

s

and then to

n <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� eps
pffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ eps
p

þ 2
ffi
ð1� epsÞeps

p eps�1=2:

Lemma 3. If n <
ffiffiffiffiffiffiffiffiffi
1�eps
pffiffi

2
p ffiffiffiffiffiffiffiffiffi

2þeps
p

þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�epsÞeps
p eps�1=2, then res is a faithful

rounding of p.

We have just shown that if n < �eps�1=2, where � � 1=2, then

the result is faithfully rounded. More precisely, in double precision

where eps ¼ 2�53, if n < 225 � 5 � 107, we get a faithfully rounded

result.
We can propose a weaker form of Lemma 3 but with a nicer

constant if we suppose, for instance, that eps � 2�7. This is not a

strong assumption since in general eps ¼ 2�53 or eps ¼ 2�24. We

can easily show that if eps � 2�7 and n < ð4=9Þeps�1=2, then res is

a faithful rounding of p.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 7, JULY 2009 997

Authorized licensed use limited to: UPMC - Universite Pierre et Marie Curie. Downloaded on June 3, 2009 at 07:56 from IEEE Xplore. Restrictions apply.

3.4 Validated Error Bound

We present here how to compute a valid error bound in pure

floating-point arithmetic in rounding to nearest. It holds that

jres� pj ¼ flðpn þ enÞ � pj j
¼ flðpn þ enÞ � ðpn þ enÞ þ ðpn þ enÞ � pj j
� epsjresj þ jpn þ en � pj
� epsjresj þ jen � ej:

Since jen � ej � �n�1�2njpj and jpj � ð1þ epsÞn�1flðja1a2 � � � anjÞ, we

obtain

jres� pj � epsjresj þ �n�1�2njpj
� epsjresj þ �n�1�2nð1þ epsÞn�1fl ja1a2 � � � anjð Þ:

Using (6) and (7), we obtain

jres� pj � fl epsjresjð Þ þ ð1þ epsÞn flð�nÞ flð�2nÞ fl ja1a2 � � � anjð Þ
� fl epsjresjð Þ þ ð1þ epsÞnþ2 flð�n�2nja1a2 � � � anjÞ

� fl epsjresjð Þ þ fl
�n�2nja1a2 � � � anj
1� ðnþ 3Þeps

� �

�ð1þ epsÞ fl epsjresj þ �n�2nja1a2 � � � anj
1� ðnþ 3Þeps

� �

� fl epsjresj þ �n�2nja1a2 � � � anj
1� ðnþ 3Þeps

� ��
ð1� 2epsÞ

� �
:

We can summarize this as follows:

Lemma 4. Suppose Algorithm 6 is applied to floating-point numbers

ai 2 IF, 1 � i � n and set p ¼
Qn

i¼1 ai. Then, the absolute forward

error affecting the product is bounded according to

jres� pj � fl epsjresj þ �n�2nja1a2 � � � anj
1� ðnþ 3Þeps

� ��
ð1� 2epsÞ

� �
: ð11Þ

We have shown that

jen � ej � fl
�n�2nja1a2 � � � anj
1� ðnþ 3Þeps

� �
:

Lemma 3 tells us that if 2je� enj < epsjresj, then res is a faithful

rounding of p (where res is the result of CompProd).
As a consequence, if

fl 2
�n�2nja1a2 � � � anj
1� ðnþ 3Þeps

� �
< fl epsjresjð Þ;

then we got a faithfully rounded result. This makes it possible to

check a posteriori if the result is faithfully rounded.

3.5 Double-Double Library

Compensated methods are a possible way to improve the accuracy.

Another possibility is to increase the working precision. For this

purpose, one can use the Bailey’s double-double [14]: double-double

numbers are represented as an unevaluated sum of a leading

double and a trailing double. More precisely, a double-double

number a is the pair ðah; alÞ of floating-point numbers with a ¼
ah þ al and jalj � epsjahj.

In the sequel, we present two algorithms to compute the

product of two double-double or a double times a double-double.

Those algorithms are taken from [15].

Algorithm 8: Multiplication of two double-double numbers

function ½rh; rl� ¼ prod dd ddðah; al; bh; blÞ
½t1; t2� ¼ TwoProductðah; bhÞ
t3 ¼ flðððah � blÞ þ ðal � bhÞÞ þ t2Þ
½rh; rl� ¼ TwoSumðt1; t3Þ

Algorithm 9: Multiplication of double-double number by a double

number

function ½rh; rl� ¼ prod dd dða; bh; blÞ
½t1; t2� ¼ TwoProductða; bhÞ
t3 ¼ flðða � blÞ þ t2Þ
½rh; rl� ¼ TwoSumðt1; t3Þ

The following result gives the accuracy of the product of two
double-double numbers.

Theorem 3 (Lauter [15, Thm. 4.7]). Let ah þ al and bh þ bl be the
double-double arguments of Algorithm 8. Then, the returned values rh
and rl satisfy

rh þ rl ¼ ðah þ alÞ � ðbh þ blÞð Þð1þ "Þ;

where " is bounded as follows: j"j � 16eps2. Furthermore, we have
jrlj � epsjrhj.

Results for Algorithm 9 are very similar with a ¼ ah and al ¼ 0.
We can now propose an algorithm that computes the product of

floating-point numbers using internally double-double numbers.

Algorithm 10: Product evaluation with a double-double library

function res ¼ DDProdðaÞ
½h; 1� ¼ ½a1; 0�
for i ¼ 2 : n

½h; 1� ¼ prod dd dðai; h; lÞ
end

res ¼ flðhþ lÞ
This algorithm requires 25n� 24 flops.
For the sequel, let us denote ’ ¼ epsð1� epsÞ and

��n ¼
16neps2

1� 16neps2
:

Let us now study the accuracy of the result of Algorithm 10.

Theorem 4. The two values h and l returned by Algorithm 10 applied to
floating-point number ai 2 IF, 1 � i � n, satisfy

hþ l ¼ pð1þ "Þ

with p ¼
Qn

i¼1 ai and

ð1� 16eps2Þn�1 � 1þ " � ð1þ 16eps2Þn�1:

Furthermore, if res ¼ flðhþ lÞ, then we have

jres� pj � epsjpj þ ��njpj:

Proof. It comes from the fact that by induction one can show that
the approximation of a1a2 � � � ak is of the form a1a2 � � � akð1þ "kÞ
with ð1� 16eps2Þk�1 � 1þ "k � ð1þ 16eps2Þk�1.

We also have

jres� pj ¼ flðhþ lÞ � pj j ¼ flðhþ lÞ � ðhþ lÞ þ ðhþ lÞ � pj j
� epsjpj þ ðhþ lÞ � pj j
�epsjpj þ j"j � jpj:

It follows that 1þ " � ð1þ 16eps2Þn�1 � 1þ ��n [8, p. 63]. As a
consequence,

jres� pj � epsjpj þ ��njpj:
ut

We can now ask when the result is faithfully rounded. Since
hþ l ¼ pð1þ "Þ, then it holds that p ¼ hþ l� "p. Furthermore, it
also holds that res ¼ flðhþ lÞ. From Lemma 2, if we prove that
2"jpj < epsjresj, then res is a faithful rounding of p. From the
definition of res, it follows that ð1� epsÞjhþ lj � jresj and so

998 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 7, JULY 2009

Authorized licensed use limited to: UPMC - Universite Pierre et Marie Curie. Downloaded on June 3, 2009 at 07:56 from IEEE Xplore. Restrictions apply.

ð1� epsÞð1þ "Þjpj � jresj. A sufficient condition to ensure a
faithful rounding is then

2"jpj < epsð1� epsÞð1þ "Þjpj and so 2" < epsð1� epsÞð1þ "Þ;

which is equivalent to

" <
’

2� ’ :

Since " � ��n, a sufficient condition is

��n <
’

2� ’ ;

which is equivalent to

n <
’

16eps2
¼ ð1� epsÞeps�1

16
:

For example, in double precision where eps ¼ 2�53, if

n < 249 � 5 � 1014, then we obtain a faithfully rounded result.

3.6 Numerical Experiments

We have performed some numerical experiments to test our new
algorithm on a laptop with a Pentium M processor at 1.73 GHz. We
used gcc version 4.0.2. We compared Prod, CompProd, and DDProd

in terms of measured computing time.
The theoretical ratio for CompProd is 19. From Table 1, we see

that the measured computing time ratio is better than the
theoretical one. The result can be surprising, but as shown in [16],
the compensated algorithms are generally faster than the theore-
tical performances. This is especially due to a better instruction-
level parallelism.

The theoretical ratio between CompProd and DDProd is approxi-
mately 25=19 � 1:3. As you can see in Table 1, the measured ratio is
about 1.7 when n is sufficiently large. This is in part due to the
renormalization step of double-double that is needed to ensure
that ½h; l� satisfies jlj � epsjhj. This renormalization step breaks
instruction-level parallelism.

As we have seen, CompProd is faster than DDProd while the
results share the same accuracy (faithful rounding). In fact, DDProd
is more accurate than CompProd in the sense that DDProd gives a
faithful rounding for n 	< eps�1 whereas CompProd gives a faithful
rounding for n 	< eps�1=2. Nevertheless, it is quite rare to need to
compute the product of more that 107 double precision floating-
point numbers. As a consequence, it seems that CompProd is a fast
and accurate algorithm to compute the product of floating-point
numbers.

4 EXPONENTIATION

In this section, we study two exponentiation algorithms (for
computing xn with x 2 IF and n 2 IN). The first one is linear (in
OðnÞ) whereas the second one is logarithmic (in OðlognÞ).

The natural method to compute xn is to apply algorithm
CompProd for ai 2 IF with ai ¼ x for 1 � i � n. As a consequence, if
n < 225 then the result is faithfully rounded. This algorithm is also
similar to the one in [5]. It is also the same as the Compensated

Horner scheme [3] applied to the polynomial pðxÞ ¼ xn. Results
concerning faithful polynomial evaluation can be found in [4].

A logarithmic algorithm was introduced in [5] using the classic
right-to-left binary exponentiation algorithm and the double-
double library. Hereafter, we propose a variant of this algorithm
with the left-to-right binary exponentiation algorithm together
with the double-double library. Contrary to the right-to-left
binary exponentiation algorithm, which needs two multiplications
of two double-double numbers, the left-to-right binary exponen-
tiation algorithm only needs a multiplication of two double-
double numbers and a multiplication of a double number by a
double-double number. Moreover, the multiplication of a double-
double by a double-double is actually a square so that it can be a
little bit optimized.

Algorithm 11: Power evaluation with double-double

function res ¼ CompLogPowerðx; nÞ % n ¼ ðntnt�1 � � �n1n0Þ2
½h; l� ¼ ½1; 0�
for i ¼ t : �1 : 0

½h; l� ¼ prod dd ddðh; l; h; lÞ
if ni ¼ 1

½h; l� ¼ prod dd dðx; h; lÞ
end

end

res ¼ flðhþ lÞ

Theorem 5. The two values h and l returned by Algorithm 11 satisfy

hþ l ¼ xnð1þ "Þ

with

ð1� 16eps2Þn�1 � 1þ " � ð1þ 16eps2Þn�1:

Proof. The proof is very similar to the one in [5, Thm. 4]. It
comes from the fact that by induction one can show that
the approximation of xk is of the form xkð1þ "kÞ with
ð1� 16eps2Þk�1 � 1þ "k � ð1þ 16eps2Þk�1. tu
We still use the notations ’ ¼ epsð1� epsÞ and

��n ¼
16neps2

1� 16neps2
:

We still have 1þ " � ð1þ 16eps2Þn�1 � 1þ ��n [8, p. 63]. Since
hþ l ¼ xnð1þ "Þ, then it holds that xn ¼ hþ l� "xn. Furthermore,
it also holds that res ¼ flðhþ lÞ. From Lemma 2, if we prove that
2"jxnj < epsjresj, then res is a faithful rounding of xn. From the
definition of res, it follows that ð1� epsÞjhþ lj � jresj and so
ð1� epsÞð1þ "Þjxnj � jresj. A sufficient condition to ensure a
faithful rounding is then

2"jxnj < epsð1� epsÞð1þ "Þjxnj and so
2" < epsð1� epsÞð1þ "Þ;

which is equivalent to

" <
’

2� ’ :

Since " � ��n, a sufficient condition is

��n <
’

2� ’ ;

which is equivalent to

n <
’

16eps2
¼ ð1� epsÞeps�1

16
:

For example, in double precision where eps ¼ 2�53, if
n < 249 � 5 � 1014, then we obtain a faithfully rounded result.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 7, JULY 2009 999

TABLE 1
Measured Computing Times with Prod Normalized to 1.0

Authorized licensed use limited to: UPMC - Universite Pierre et Marie Curie. Downloaded on June 3, 2009 at 07:56 from IEEE Xplore. Restrictions apply.

We have compared our algorithm CompLogPower with the right-
to-left binary exponentiation algorithm in [5]. Our algorithm is just
1.07 times faster, in average, than the right-to-left binary exponen-
tiation algorithm. The fact to replace a multiplication of two double-
double numbers by a multiplication of a double number by a
double-double number is not sufficient to obtain a good speedup.

5 CONCLUSION

In this paper, we have provided an accurate algorithm for
computing the product of floating-point numbers. We gave some
sufficient conditions to obtain a faithfully rounded result as well
as validated error bounds. We compared this algorithm with the
classic recursive one using internally a double-double library. We
have shown that our algorithm was faster while sharing the same
accuracy. We applied our compensated algorithm to compute
exponentiation of floating-point numbers. We improved this
algorithm by using a double-double library.

ACKNOWLEDGMENTS

The author would like to thank the anonymous referees for their
valuable comments and suggestions.

REFERENCES

[1] T. Ogita, S.M. Rump, and S. Oishi, “Accurate Sum and Dot Product,” SIAM
J. Scientific Computing, vol. 26, no. 6, pp. 1955-1988, 2005.

[2] S.M. Rump, T. Ogita, and S. Oishi, “Accurate Floating-Point Summation.
Part I: Faithful Rounding,” SIAM J. Scientific Computing, vol. 31, no. 1, Oct.
2008.

[3] Research Report 04, S. Graillat, N. Louvet, and P. Langlois, “Compensated
Horner Scheme,” �Equipe de recherche DALI, Laboratoire LP2A, Université
de Perpignan Via Domitia, France, July 2005.

[4] P. Langlois and N. Louvet, “How to Ensure a Faithful Polynomial
Evaluation with the Compensated Horner Algorithm,” Proc. 18th IEEE
Symp. Computer Arithmetic (ARITH ’07), pp. 141-149, 2007.

[5] P. Kornerup, V. Lefevre, and J.-M. Muller, Computing Integer Powers in
Floating-Point Arithmetic, arXiv:0705.4369v1 [cs.NA], 2007.

[6] P.H. Sterbenz, Floating-Point Computation. Prentice-Hall, 1974.
[7] IEEE Standard for Binary Floating-Point Arithmetic, vol. 22, no. 2, ANSI/IEEE

Standard 754-1985, New York, IEEE, 1985, reprinted in SIGPLAN Notices,
pp. 9-25, 1987.

[8] N.J. Higham, Accuracy and Stability of Numerical Algorithms, second ed.
SIAM, 2002.

[9] T.J. Dekker, “A Floating-Point Technique for Extending the Available
Precision,” Numerical Math., vol. 18, pp. 224-242, 1971.

[10] D.E. Knuth, The Art of Computer Programming, Volume 2, Seminumerical
Algorithms, third ed. Addison-Wesley, 1998.

[11] Y. Nievergelt, “Scalar Fused Multiply-Add Instructions Produce Floating-
Point Matrix Arithmetic Provably Accurate to the Penultimate Digit,” ACM
Trans. Math. Software, vol. 29, no. 1, pp. 27-48, 2003.

[12] C. Jacobi, H.-J. Oh, K.D. Tran, S.R. Cottier, B.W. Michael, H. Nishikawa,
Y. Totsuka, T. Namatame, and N. Yano, “The Vector Floating-Point
Unit in a Synergistic Processor Element of a Cell Processor,” Proc.
17th IEEE Symp. Computer Arithmetic (ARITH ’05) pp. 59-67, 2005.

[13] T. Ogita, S.M. Rump, and S. Oishi, “Verified Solution of Linear Systems
without Directed Rounding,” Technical Report 2005-04, Advanced Re-
search Inst. of Science and Eng., Waseda Univ., 2005.

[14] D.H. Bailey, A Fortran-90 Double-Double Library, http://crd.lbl.gov/
dhbailey/mpdist/index.html, 2001.

[15] C.Q. Lauter, Basic Building Blocks for a Triple-Double Intermediate Format,
Research Report RR-5702, INRIA, Sept. 2005.

[16] P. Langlois and N. Louvet, More Instruction Level Parallelism Explains the
Actual Efficiency of Compensated Algorithms, hal-00165020, version 1, 2007.

. For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

1000 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 7, JULY 2009

Authorized licensed use limited to: UPMC - Universite Pierre et Marie Curie. Downloaded on June 3, 2009 at 07:56 from IEEE Xplore. Restrictions apply.

