
Information and Computation 216 (2012) 57–71
Contents lists available at SciVerse ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Accurate summation, dot product and polynomial evaluation in complex
floating point arithmetic

Stef Graillat ∗, Valérie Ménissier-Morain 1

UPMC Univ Paris 06, UMR 7606, LIP6, 4 place Jussieu, F-75252, Paris cedex 05, France

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 30 March 2012

Keywords:
Complex floating point arithmetic
Error-free transformations
Accurate summation
Accurate dot product
Accurate polynomial evaluation
Horner’s scheme
High precision

Several different techniques and softwares intend to improve the accuracy of results
computed in a fixed finite precision. Here we focus on methods to improve the accuracy
of summation, dot product and polynomial evaluation. Such algorithms exist real floating
point numbers. In this paper, we provide new algorithms which deal with complex floating
point numbers. We show that the computed results are as accurate as if computed in
twice the working precision. The algorithms are simple since they only require addition,
subtraction and multiplication of floating point numbers in the same working precision as
the given data.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that computing with finite precision implies some rounding errors. These errors can lead to inexact
results for a computation. An important tool to try to avoid this are error-free transformations: to compute not only a floating
point approximation but also an exact error term without overlapping. This can be viewed as a double–double floating point
numbers [1] but without the renormalization step.

Error-free transformations have been widely used to provide some new accurate algorithms in real floating point arith-
metic (see [2,3] for accurate sum and dot product and [4] for polynomial evaluation). Complex error-free transformations
are then the next step for providing accurate algorithms using complex numbers.

The rest of the paper is organized as follows. In Section 2, we recall some results on real floating point arithmetic and
error-free transformations. In Section 3, we present the complex floating point arithmetic and we propose some new error-
free transformations for this arithmetic. In Section 4, we propose some accurate algorithms to compute summation and dot
product of complex floating point vectors. These algorithms are derived by applying the real floating point algorithms to
both the real and the imaginary parts. In Section 5, we study different polynomial evaluation algorithms. We first describe
the Horner scheme in complex floating point arithmetic. We then present the compensated Horner scheme in complex
arithmetic. We provide an error analysis for both versions of the Horner scheme and we conclude by presenting some
numerical experiments confirming the accuracy of our algorithm.

This paper is an extended version of the paper [5]. The paper [5] was only dealing with accurate polynomial evaluation.
Here we also consider accurate summation and dot product in complex floating point arithmetic.

* Corresponding author.
E-mail addresses: stef.graillat@lip6.fr (S. Graillat), valerie.menissier-morain@lip6.fr (V. Ménissier-Morain).

1 This work has been done while the second author was visiting University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
0890-5401/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.ic.2011.09.003

http://dx.doi.org/10.1016/j.ic.2011.09.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:stef.graillat@lip6.fr
mailto:valerie.menissier-morain@lip6.fr
http://dx.doi.org/10.1016/j.ic.2011.09.003

58 S. Graillat, V. Ménissier-Morain / Information and Computation 216 (2012) 57–71
2. Real floating point arithmetic

In this section, we first recall the principle of real floating point arithmetic. Then we present the well-known error-free
transformations associated with the classical operations addition, subtraction, multiplication.

2.1. Notations and fundamental property of real floating point arithmetic

Throughout the paper, we assume to work with a floating point arithmetic adhering to IEEE 754 floating point stan-
dard [6]. We assume that no overflow nor underflow occur. The set of floating point numbers is denoted by F, the relative
rounding error by eps. For IEEE 754 double precision, we have eps = 2−53 and for single precision eps = 2−24.

We denote by fl(·) the result of a floating point computation, where all operations inside parentheses are done in floating
point working precision. Floating point operations in IEEE 754 satisfy [7]

fl(a ◦ b) = (a ◦ b)(1 + ε1) = (a ◦ b)/(1 + ε2) for ◦ = {+,−, ·, /} and |εν | � eps.

This implies that∣∣a ◦ b − fl(a ◦ b)
∣∣ � eps|a ◦ b| and

∣∣a ◦ b − fl(a ◦ b)
∣∣ � eps

∣∣fl(a ◦ b)
∣∣ for ◦ = {+,−, ·, /}. (2.1)

We use standard notation for error estimations. The quantities γn are defined as usual [7] by

γn := n eps

1 − n eps
for n ∈N,

where we implicitly assume that n eps � 1 and we will use inequality eps �
√

2γ2 in the following proofs.

2.2. Error-free transformations in real floating point arithmetic

One can notice that a ◦ b ∈ R and fl(a ◦ b) ∈ F but in general we do not have a ◦ b ∈ F. It is known that for the basic
operations +, −, ·, the approximation error of a floating point operation is still a floating point number (see for example [8]):

x = fl(a ± b) ⇒ a ± b = x + y with y ∈ F,

x = fl(a · b) ⇒ a · b = x + y with y ∈ F. (2.2)

These are error-free transformations of the pair (a,b) into the pair (x, y). Fortunately, the quantities x and y in (2.2) can be
computed exactly in floating point arithmetic.

We use Matlab-like notations to describe the algorithms.

2.2.1. Addition
For addition, we can use the following algorithm by Knuth [9, Thm. B, p. 236].

Algorithm 2.1 (Error-free transformation of the sum of two floating point numbers). (See Knuth [9].)

function [x, y] = TwoSum(a,b)

x = fl(a + b); z = fl(x − a); y = fl((a − (x − z)) + (b − z))

Another algorithm to compute an error-free transformation is the following algorithm from Dekker [8]. The drawback of
this algorithm is that we have x + y = a + b provided that |a| � |b|. Generally, on modern computers, a comparison followed
by a branching and 3 operations costs more than 6 operations. As a consequence, TwoSum is generally more efficient than
FastTwoSum.

Algorithm 2.2 (Error-free transformation of the sum of two floating point numbers with |a| � |b|). (See Dekker [8].)

function [x, y] = FastTwoSum(a,b)

x = fl(a + b); y = fl((a − x) + b)

2.2.2. Multiplication
For the error-free transformation of a product, we first need to split the input argument into two parts.

S. Graillat, V. Ménissier-Morain / Information and Computation 216 (2012) 57–71 59
Splitting Let p be the integer number given by eps = 2−p and define s = �p/2� and factor = fl(2s + 1). For example, if
the working precision is IEEE 754 double precision, then p = 53 and s = 27 and factor = 1.00 . . . 00︸ ︷︷ ︸

26

1 00 . . . 00︸ ︷︷ ︸
26

227 allows by

multiplying a number to split the mantissa of this number into its most and least significant halves. The quantities p, s and
factor are constants of the floating point arithmetic.

The following algorithm by Dekker [8] splits a floating point number a ∈ F into two parts x and y such that

a = x + y and x and y nonoverlapping with |y| � |x|.
Two floating point values x and y with |y| � |x| are nonoverlapping if the least significant nonzero bit of x is more signifi-
cant than the most significant nonzero bit of y.

Algorithm 2.3 (Error-free split of a floating point number into two parts). (See Dekker [8].)

function [x, y] = Split(a,b)

c = fl(factor · a); x = fl(c − (c − a)); y = fl(a − x)

Product An algorithm from Veltkamp (see [8]) makes it possible to compute an error-free transformation for the product
of two floating point numbers by splitting the two arguments.

This algorithm returns two floating point numbers x and y such that

a · b = x + y with x = fl(a · b).

Algorithm 2.4 (Error-free transformation of the product of two floating point numbers). (See Veltkamp [8].)

function [x, y] = TwoProduct(a,b)

x = fl(a · b)

[a1,a2] = Split(a); [b1,b2] = Split(b)

y = fl(a2 · b2 − (((x − a1 · b1) − a2 · b1) − a1 · b2))

2.2.3. Properties
The following theorem summarizes the properties of algorithms TwoSum and TwoProduct.

Theorem 2.1. (See Ogita, Rump and Oishi [2].)

Addition Let a,b ∈ F and let x, y ∈ F such that [x, y] = TwoSum(a,b) (Algorithm 2.1).
Then,

a + b = x + y, x = fl(a + b), |y| � eps|x|, |y| � eps|a + b|. (2.3)

The algorithm TwoSum requires 6 flops.

Product Let a,b ∈ F and let x, y ∈ F such that [x, y] = TwoProduct(a,b) (Algorithm 2.4). Then,

a · b = x + y, x = fl(a · b), |y| � eps|x|, |y| � eps|a · b|. (2.4)

The algorithm TwoProduct requires 17 flops.

2.2.4. Multiplication with FMA
The TwoProduct algorithm can be re-written in a very simple way if a Fused-Multiply-and-Add (FMA) operator is

available on the targeted architecture [10,11]. This means that for a,b, c ∈ F, the result of FMA(a,b, c) is the nearest floating
point number of a · b + c ∈R. The FMA operator satisfies

FMA(a,b, c) = (a · b + c)(1 + ε1) = (a · b + c)/(1 + ε2) with |εν | � eps.

Algorithm 2.5 (Error-free transformation of the product of two floating point numbers using an FMA). (See Ogita, Rump and
Oishi [2].)

function [x, y] = TwoProductFMA(a,b)

x = fl(a · b); y = FMA(a,b,−x)

The TwoProductFMA algorithm requires only 2 flops.

60 S. Graillat, V. Ménissier-Morain / Information and Computation 216 (2012) 57–71
3. Complex floating point arithmetic

3.1. Notations and fundamental property of complex floating point arithmetic

We denote by F + iF the set of complex floating point numbers. As in the real case, we denote by fl(·) the result of
a floating point computation, where all operations inside parentheses are done in floating point working precision in the
obvious way [7, p. 71]. The following properties hold [7,12] for x, y ∈ F+ iF,

fl(x ◦ y) = (x ◦ y)(1 + ε1) = (x ◦ y)/(1 + ε2), for ◦ = {+,−} and |εν | � eps, (3.5)

and

fl(x · y) = (x · y)(1 + ε1), |ε1| �
√

2γ2. (3.6)

This implies that∣∣a ◦ b − fl(a ◦ b)
∣∣ � eps|a ◦ b| and

∣∣a ◦ b − fl(a ◦ b)
∣∣ � eps

∣∣fl(a ◦ b)
∣∣ for ◦ = {+,−}

and ∣∣x · y − fl(x · y)
∣∣ �

√
2γ2|x · y|.

For the complex multiplication, we can replace the term
√

2γ2 by
√

5eps which is nearly optimal (see [13]). As a
consequence, in the sequel, all the bounds for algorithms involving a multiplication can be improved by a small constant
factor.

We will also use the notation γ̃n for the quantities

γ̃n := n
√

2γ2

1 − n
√

2γ2
.

And we will use inequalities (1 + √
2γ2)(1 + γ̃n) � (1 + γ̃n+1) and (1 + √

2γ2)γ̃n−1 � γ̃n .

3.2. Sum and product

The error-free transformations presented hereafter were first described in [14]. The sum requires still only one error term
as for the real case but the product needs three error terms.

3.2.1. Addition
Algorithm 3.1 (Error-free transformation of the sum of two complex floating point numbers x = a + ib and y = c + id).

function [s, e] = TwoSumCplx(x, y)

[s1, e1] = TwoSum(a, c); [s2, e2] = TwoSum(b,d)

s = s1 + is2; e = e1 + ie2

Theorem 3.1. Let x, y ∈ F+ iF and let s, e ∈ F+ iF such that [s, e] = TwoSumCplx(x, y) (Algorithm 3.1). Then,

x + y = s + e, s = fl(x + y), |e| � eps|s|, |e| � eps|x + y|. (3.7)

The algorithm TwoSumCplx requires 12 flops.

Proof. From Theorem 2.1 with TwoSum, we have s1 + e1 = a + c and s2 + e2 = b + d. It follows that s + e = x + y with
s = fl(x + y). From (3.5), we derive that |e| � eps|s| and |e| � eps|x + y|. �
3.2.2. Multiplication

Algorithm 2.4 cannot be straightforward generalized to complex multiplication. We need the new following algorithm.

Algorithm 3.2 (Error-free transformation of the product of two complex floating point numbers x = a + ib and y = c + id).

function [p, e, f , g] = TwoProductCplx(x, y)

[z1,h1] = TwoProduct(a, c); [z2,h2] = TwoProduct(b,d)

[z3,h3] = TwoProduct(a,d); [z4,h4] = TwoProduct(b, c)
[z5,h5] = TwoSum(z1,−z2); [z6,h6] = TwoSum(z3, z4)

p = z5 + iz6; e = h1 + ih3; f = −h2 + ih4; g = h5 + ih6

S. Graillat, V. Ménissier-Morain / Information and Computation 216 (2012) 57–71 61
Theorem 3.2. Let x, y ∈ F+ iF and let p, e, f , g ∈ F+ iF such that [p, e, f , g] = TwoProductCplx(x, y) (Algorithm 2.4). Then,

x · y = p + e + f + g, p = fl(x · y), |e + f + g| � √
2γ2|x · y|. (3.8)

The algorithm TwoProductCplx requires 80 flops.

Proof. From Theorem 2.1, it holds that z1 + h1 = a · c, z2 + h2 = b · d, z3 + h3 = a · d, z4 + h4 = b · c, z5 + h5 = z1 − z2 and
z6 + h6 = z3 + z4. By the definition of p, e, f , g , we conclude that x · y = p + e + f + g with p = fl(x · y). From (3.6), we
deduce that |e + f + g| = |x · y − fl(x · y)| � √

2γ2|x · y|. �
Optimization of the algorithm In Algorithm 3.2, in each call to TwoProduct, we have to split the two arguments. Yet, we
split the same numbers a, b, c and d twice. With only one split for each of these numbers, the cost is 64 flops. The previous
algorithm can be expanded as follows:

Algorithm 3.3 (Error-free transformation of the product of two complex floating point numbers x = a + ib and y = c + id with single
splitting).

function [p, e, f , g] = TwoProductCplxSingleSplitting(x, y)

[a1,a2] = Split(a), [b1,b2] = Split(b), [c1, c2] = Split(c), [d1,d2] = Split(d)

z1 = fl(a · c), z2 = fl(b · d), z3 = fl(a · d), z4 = fl(b · c)
h1 = fl(a2 · c2 − (((z1 − a1 · c1) − a2 · c1) − a1 · c2))

h2 = fl(b2 · d2 − (((z2 − b1 · d1) − b2 · d1) − b1 · d2))

h3 = fl(a2 · d2 − (((z3 − a1 · d1) − a2 · d1) − a1 · d2))

h4 = fl(b2 · c2 − (((z4 − b1 · c1) − b2 · c1) − b1 · c2))

[z5,h5] = TwoSum(z1,−z2), [z6,h6] = TwoSum(z3, z4)

p = z5 + iz6, e = h1 + ih3, f = −h2 + ih4, g = h5 + ih6

3.2.3. Multiplication with FMA
Of course we obtain a much faster algorithm if we use TwoProductFMA instead of TwoProduct. In that case, the

numbers of flops falls down to 20.

Algorithm 3.4 (Error-free transformation of the product of two complex floating point numbers x = a + ib and y = c + id using
FMA).

function [p, e, f , g] = TwoProductFMACplx(x, y)

[z1,h1] = TwoProductFMA(a, c); [z2,h2] = TwoProductFMA(b,d)

[z3,h3] = TwoProductFMA(a,d); [z4,h4] = TwoProductFMA(b, c)
[z5,h5] = TwoSum(z1,−z2); [z6,h6] = TwoSum(z3, z4)

p = z5 + iz6; e = h1 + ih3; f = −h2 + ih4; g = h5 + ih6

The 8.5:1 ratio between the cost of TwoProduct and TwoProductFMA algorithms and the 3.2:1 ratio between the
cost of TwoProductCplxSingleSplitting and TwoProductFMACplx algorithms show that the availability of an
FMA is crucial for fast error-free transformations in real and complex arithmetic.

4. Accurate summation and dot product

In this section, we first recall an accurate algorithm for the summation of real floating point numbers and we present
the error bound analysis. We then show that we can apply this algorithm to both the real and imaginary part of a complex
floating point number vector. We give an error bound analysis for this new algorithm. We do similar analysis for dot
product.

4.1. Accurate summation

Real floating point numbers case The following algorithm makes it possible to accurately compute the sum of real floating
point numbers. By accurately, we mean as if computed in twice the working precision which is sum up in the following
result.

62 S. Graillat, V. Ménissier-Morain / Information and Computation 216 (2012) 57–71
Algorithm 4.1 (Summation in twice the working precision for real floating point numbers vectors). (See Ogita, Rump and Oishi [2].)

function res= Sum2(p)

π1 = p1; σ1 = 0;
for i = 2 : n

[πi,qi] = TwoSum(πi−1, pi)

σi = fl(σi−1 + qi)

end
res= fl(πn + σn)

Proposition 4.1. (See Ogita, Rump and Oishi [2].) Suppose Algorithm Sum2 is applied to floating point number pi ∈ F, 1 � i � n. Let
s := ∑

pi , S := ∑ |pi |. Then, we have

|res− s| � eps|s| + γ 2
n−1 S.

Complex floating point numbers case If the inputs are now complex floating point numbers p j = a j + ib j , we want to compute
s = ∑n

j=1 p j . This can easily be done by compute the sum of the real part and the imaginary part with Sum2.

Algorithm 4.2 (Summation in twice the working precision for complex floating point numbers vectors).

function res= Sum2cplx(p)

Let a and b be the vectors representing the real and imaginary parts of p
resr = Sum2(a)

resi = Sum2(b)

res= resr + i resi

Proposition 4.2. Suppose Algorithm Sum2cplx is applied to floating point number p j = a j + ib j ∈ F+ iF, 1 � j � n. Let s := ∑
p j ,

S := ∑ |p j |. Then, we have

|res− s| � √
2eps|s| + 2γ 2

n−1 S.

Proof. We have |res− s|2 = |resr − ∑n
i=1 ai |2 + |resi − ∑n

i=1 bi |2. We know from Proposition 4.1 that∣∣∣∣∣resr −
n∑

i=1

ai

∣∣∣∣∣ � eps

∣∣∣∣∣
n∑

i=1

ai

∣∣∣∣∣ + γ 2
n−1

n∑
i=1

|ai| and

∣∣∣∣∣resi −
n∑

i=1

bi

∣∣∣∣∣ � eps

∣∣∣∣∣
n∑

i=1

bi

∣∣∣∣∣ + γ 2
n−1

n∑
i=1

|bi|.

As a consequence,

|res− s|2 �
(

eps

∣∣∣∣∣
n∑

i=1

ai

∣∣∣∣∣ + γ 2
n−1

n∑
i=1

|ai|
)2

+
(

eps

∣∣∣∣∣
n∑

i=1

bi

∣∣∣∣∣ + γ 2
n−1

n∑
i=1

|bi|
)2

.

Since for all numbers x and y, we have (x + y)2 � 2(x2 + y2), it follows

|res− s|2 � 2eps2

(∣∣∣∣∣
n∑

i=1

ai

∣∣∣∣∣
2

+
∣∣∣∣∣

n∑
i=1

bi

∣∣∣∣∣
2)

+ 2γ 4
n−1

((
n∑

i=1

|ai|
)2

+
(

n∑
i=1

|bi|
)2)

.

Since |∑n
i=1 ai |2 + |∑n

i=1 bi |2 = |∑n
i=1(ai + ibi)|2 = |s|2, we have

|res− s|2 � 2eps2|s|2 + 2γ 4
n−1

((
n∑

i=1

|ai|
)2

+
(

n∑
i=1

|bi|
)2)

.

Furthermore, since for all numbers x, y � 0, we have x2 + y2 � (x + y)2, we get

|res− s|2 � 2eps2|s|2 + 2γ 4
n−1

(
n∑

i=1

(|ai| + |bi|
))2

.

As for all numbers x and y, x + y �
√

2
√

x2 + y2, we have |ai| + |bi | �
√

2|pi | and hence,

S. Graillat, V. Ménissier-Morain / Information and Computation 216 (2012) 57–71 63
|res− s|2 � 2eps2|s|2 + 4γ 4
n−1

(
n∑

i=1

|pi |
)2

.

Since for all x, y � 0,
√

x + y �
√

x + √
y, it follows

|res− s| � √
2eps|s| + 2γ 2

n−1

n∑
i=1

|pi |.

This concludes the proof. �
4.2. Accurate dot product

Real floating point numbers case Let x = (x j) and y = (y j), we compute p = xT y = ∑
x j y j

Algorithm 4.3 (Dot product in twice the working precision for real floating point numbers vectors). (See Ogita, Rump and Oishi [2].)

function res= Dot2(x, y)

[p, s] = TwoProduct(x1, y1)

for i = 2 : n
[h, r] = TwoProduct(xi, yi)

[p,q] = TwoSum(p,h)

s = fl(s + (q + r))
end
res= fl(p + s)

Proposition 4.3. (See Ogita, Rump and Oishi [2].) Let floating point numbers xi, yi ∈ F, 1 � i � n, be given and denote by res ∈ F

the result computed by Algorithm Dot2. Then occurs,∣∣res− xT y
∣∣ � eps

∣∣xT y
∣∣ + γ 2

n

∣∣xT
∣∣|y|.

Complex floating point numbers case Let x = (x j) with x j = a j + ib j and y = (y j) with y j = c j + id j , we compute p = x∗ y =∑
x j y j = ∑

(a jc j + b jd j) + i
∑

(b jc j − a jd j). These two sums will be each one computed by a dot product of real floating
point numbers vectors with double length: let X be the vector with the a j as first elements followed by the b j , Y be the
vector equivalent for y with the c j as first elements followed by the d j and Y ′ be the vector equivalent for −iy with the d j
as first elements followed by the −c j . With a block vector notation, we have

X =
[

Re(x)
Im(x)

]
, Y =

[
Re(y)

Im(y)

]
and Y ′ =

[
Im(y)

−Re(y)

]
and we have p = X T Y + i X T Y ′ .

Algorithm 4.4 (Dot product in twice the working precision for complex floating point numbers vectors).

function res= Dot2cplx(x, y)

build X, Y , Y ′
res= Dot2(X, Y) + i Dot2(X, Y ′)

Proposition 4.4. Let floating point numbers x = (x j) with x j = a j + ib j and y = (y j) with y j = c j + id j be given and denote by
res ∈ F+ iF the result computed by Algorithm Dot2cplx. Then occurs,∣∣res− x∗ y

∣∣ �
√

2eps
∣∣x∗ y

∣∣ + 2γ 2
2n|x|T |y|.

Proof. From Proposition 4.3, it follows that∣∣X T Y − Dot2(X, Y)
∣∣ � eps

∣∣X T Y
∣∣ + γ 2

2n|X |T |Y |,
and ∣∣X T Y ′ − Dot2

(
X, Y ′)∣∣ � eps

∣∣X T Y ′∣∣ + γ 2 |X |T
∣∣Y ′∣∣.
2n

64 S. Graillat, V. Ménissier-Morain / Information and Computation 216 (2012) 57–71
As a consequence,∣∣res− x∗ y
∣∣2 = ∣∣X T Y − Dot2(X, Y)

∣∣2 + ∣∣X T Y ′ − Dot2
(

X, Y ′)∣∣2
.

Since for all numbers x and y, we have (x + y)2 � 2(x2 + y2), it follows∣∣res− x∗ y
∣∣2 � 2

(
eps2

∣∣X T Y
∣∣2 + γ 4

2n

(|X |T |Y |)2) + 2
(
eps2

∣∣X T Y ′∣∣2 + γ 4
2n

(|X |T
∣∣Y ′∣∣)2)

.

We rearrange this inequalities and we obtain∣∣res− x∗ y
∣∣2 � 2eps2(∣∣X T Y

∣∣2 + ∣∣X T Y ′∣∣2) + 2γ 4
2n

((|X |T |Y |)2 + (|X |T
∣∣Y ′∣∣)2)

.

For the first part of the right member we use the definition |X T Y |2 + |X T Y ′|2 = |x∗ y|2. We now have to find an upper
bound for the second part (|X |T |Y |)2 + (|X |T |Y ′|)2. Since still for all x, y � 0, we have x2 + y2 � (x + y)2, it follows that
(|X |T |Y |)2 +(|X |T |Y ′|)2 � (|X |T |Y |+|X |T |Y ′|)2. As a consequence, we just have to find an upper bound for |X |T |Y |+|X |T |Y ′|.

We have

|X |T |Y | + |X |T
∣∣Y ′∣∣ =

n∑
i=1

(|aici| + |bidi|
) +

n∑
i=1

(|aidi| + |bici |
) =

n∑
i=1

(|aici| + |bidi| + |aidi| + |bici |
)

and we factorize this internal sum

|X |T |Y | + |X |T
∣∣Y ′∣∣ =

n∑
i=1

(|ai| + |bi|
)(|ci| + |di|

)
.

By definition |x|T |y| = ∑n
i=1(

√
a2

i + b2
i

√
c2

i + d2
i). Since for all numbers x and y, we have x + y �

√
2
√

x2 + y2, it follows

that

|ai| + |bi| �
√

2
√

a2
i + b2

i and |ci| + |di| �
√

2
√

c2
i + d2

i

and by multiplying these two inequalities, we get

n∑
i=1

(|ai| + |bi|
)(|ci| + |di|

)
�

n∑
i=1

(√
2
√

a2
i + b2

i

)(√
2
√

c2
i + d2

i

)
= 2

n∑
i=1

√
a2

i + b2
i

√
c2

i + d2
i ,

and so

|X |T |Y | + |X |T
∣∣Y ′∣∣ � 2|x|T |y|.

Consequently, we obtain∣∣res− x∗ y
∣∣2 � 2eps2

∣∣x∗ y
∣∣2 + 4γ 4

2n

(|x|T |y|)2
. (4.9)

It is clear that for all numbers x, y � 0, we have
√

x + y �
√

x + √
y. Applying this to Eq. (4.9), we obtain∣∣res− x∗ y

∣∣ �
√

2eps2
∣∣x∗ y

∣∣2 + 4γ 4
2n

(|x|T |y|)2 �
√

2eps
∣∣x∗ y

∣∣ + 2γ 2
2n

∣∣xT
∣∣|y|.

This concludes the proof. �
It is difficult to use such a scheme for polynomial evaluation. Indeed, let

p(z) =
n∑

j=0

a j z
j, a j ∈C, z = x + iy ∈C

be a polynomial. By separating real and imaginary parts, we can write it as p(z) = pr(x, y) + iqr(x, y) with pr and qr with
real coefficients and evaluate pr and qr with Horner scheme. To achieve this, we need formal manipulations to compute
pr and qr that are costly. In that case, it is easier to use the new error-free transformations for complex floating point
arithmetic.

5. Accurate polynomial evaluation

First of all we describe the classical Horner scheme to evaluate polynomial p with complex floating point coefficients
on x a complex floating point value. The computed value res is generally not the mathematical value p(x) rounded to the
working precision. We want then to reduce the gap between these values so we modify this algorithm to compute res and
additionally four polynomial error terms that we will have to evaluate on x to deduce a complex floating point correction
term c that we have to add to res. Afterwards we will study mathematically and experimentally the improvement of the
accuracy consisting in replacing res by fl(res+ c).

S. Graillat, V. Ménissier-Morain / Information and Computation 216 (2012) 57–71 65
5.1. Classical Horner scheme for complex floating point arithmetic

The classical method for evaluating a polynomial

p(x) =
n∑

i=0

aix
i, ai, x ∈ F+ iF

is the Horner scheme which consists on the following algorithm:

Algorithm 5.1 (Polynomial evaluation with Horner’s scheme).

function res= Horner(p, x)
sn = an

for i = n − 1 : −1 : 0
si = si+1 · x + ai

end
res = s0

Proposition 5.1. A forward error bound is

∣∣p(x) − Horner(p, x)
∣∣ � γ̃2n

n∑
i=0

|ai||x|i = γ̃2n p̃
(|x|) (5.10)

where p̃(x) = ∑n
i=0 |ai |xi .

Proof. This is a straightforward adaptation of the proof found in [7, p. 95] using (3.5) and (3.6) for complex floating point
arithmetic. �

The classical condition number that describes the evaluation of p(x) = ∑n
i=0 ai xi at x is

cond(p, x) =
∑n

i=0 |ai||x|i
|∑n

i=0 aixi | = p̃(|x|)
|p(x)| . (5.11)

Thus if p(x)
= 0, Eqs. (5.10) and (5.11) can be combined so that

|p(x) − Horner(p, x)|
|p(x)| � γ̃2n cond(p, x). (5.12)

5.2. Compensated Horner scheme

We now propose an error-free transformation for polynomial evaluation with the Horner scheme. We produce four
polynomial error terms monomial-by-monomial: a monomial for each polynomial at each iteration.

Algorithm 5.2 (Error-free transformation for the Horner scheme).

function [res, pπ , pμ, pν, pσ] = EFTHorner(p, x)
sn = an

for i = n − 1 : −1 : 0
[pi,πi,μi, νi] = TwoProductCplx(si+1, x)
[si, σi] = TwoSumCplx(pi,ai)

Set πi , μi , νi , σi respectively as the coefficient of degree i in pπ , pμ , pν , pσ

end
res = s0

The next theorems and proofs are very similar to the ones of [4]. It is just necessary to change real error-free transfor-
mations into complex error-free transformations and to change eps into

√
2γ2. This leads to change the γn into γ̃n .

Theorem 5.2 (Equality). Let p(x) = ∑n
i=0 ai xi be a polynomial of degree n with complex floating point coefficients, and let x be a

complex floating point value. Then Algorithm 5.2 computes both

66 S. Graillat, V. Ménissier-Morain / Information and Computation 216 (2012) 57–71
i) the floating point evaluation res= Horner(p, x) and
ii) four polynomials pπ , pμ , pν and pσ of degree n − 1 with complex floating point coefficients.

Then,

p(x) = res+ (pπ + pσ + pμ + pν)(x). (5.13)

Proof. Thanks to the error-free transformations, we have pi + πi + μi + νi = si+1.x and si + σi = pi + ai . By induction, it is
easy to show that

n∑
i=0

aix
i = s0 +

n−1∑
i=0

πi x
i +

n−1∑
i=0

μi x
i +

n−1∑
i=0

νi x
i +

n−1∑
i=0

σi x
i,

which is exactly (5.13). �
Proposition 5.3 (Bound on the error). Given p(x) = ∑n

i=0 ai xi a polynomial of degree n with complex floating point coefficients, and
x a complex floating point value. Let res be the floating point value, pπ , pμ , pν and pσ be the four polynomials of degree n − 1, with
complex floating point coefficients, such that [res, pπ , pμ, pν, pσ] = EFTHorner(p, x). Then,(

˜(pπ + pμ + pν) + p̃σ

)(|x|) � γ̃2n p̃
(|x|).

Proof. The proof is organized as follows: we prove a bound on |pn−i ||x|n−i and |sn−i ||x|n−i from which we deduce a bound
on |πi + μi + νi | and |σi | and we use these bounds on each coefficient of the polynomial error terms to obtain finally the
expected bound on these polynomials.

• By definition, for i = 1, . . . ,n, pn−i = sn−i+1 · x and sn−i = pn−i + an−i . From Eq. (3.6), we deduce fl(sn−i+1 · x) = (1 +
ε1)sn−i+1 · x with |ε1| �

√
2γ2. From Eq. (3.5), we deduce fl(pn−i +an−i) = (1 +ε2)(pn−i +an−i) with |ε2| � eps �

√
2γ2.

Consequently

|pn−i| � (1 + √
2γ2)|sn−i+1||x| and |sn−i | � (1 + √

2γ2)
(|pn−i| + |an−i|

)
. (5.14)

• These two bounds will be used in the basic case and the inductive case of the following double property: for i = 1, . . . ,n,

|pn−i| � (1 + γ̃2i−1)

i∑
j=1

|an−i+ j|
∣∣x j

∣∣ and |sn−i | � (1 + γ̃2i)

i∑
j=0

|an−i+ j|
∣∣x j

∣∣. (5.15)

For i = 1:
Since sn = an the bound of Eq. (5.14) can be rewritten as |pn−1| � (1 + √

2γ2)|an||x| � (1 + γ̃1)|an||x|. We combine this
bound on |pn−1| to (5.14) to obtain |sn−1| � (1 + √

2γ2)((1 + γ̃1)|an||x| + |an−1|) � (1 + γ̃2)(|an||x| + |an−1|). Thus (5.15)
is satisfied for i = 1.
Let us now suppose that (5.15) is true for some integer i such that 1 � i < n. According to (5.14), we have |pn−(i+1)| �
(1 + √

2γ2)|sn−i ||x|. Thanks to the induction hypothesis, we derive,

|pn−(i+1)| � (1 + √
2γ2)(1 + γ̃2i)

i∑
j=0

|an−i+ j|
∣∣x j+1

∣∣ � (1 + γ̃2(i+1)−1)

i+1∑
j=1

|an−(i+1)+ j|
∣∣x j

∣∣.
Let us combine (5.14) with this inequality, we have,

|sn−(i+1)| � (1 + √
2γ2)

(|pn−(i+1)| + |an−(i+1)|
)

� (1 + √
2γ2)(1 + γ̃2(i+1)−1)

[
i+1∑
j=1

|an−(i+1)+ j|
∣∣x j

∣∣ + |an−(i+1)|
]

� (1 + γ̃2(i+1))

i+1∑
j=0

|an−(i+1)+ j|
∣∣x j

∣∣.
So (5.15) is proved by induction. We bound each of these sums by p(|x|)/|xn−i | and obtain for i = 1, . . . ,n,

|pn−i|
∣∣xn−i

∣∣ � (1 + γ̃2i−1)̃p
(|x|) and |sn−i |

∣∣xn−i
∣∣ � (1 + γ̃2i)̃p

(|x|). (5.16)

S. Graillat, V. Ménissier-Morain / Information and Computation 216 (2012) 57–71 67
• From Theorem 3.1 and Theorem 3.2, for i = 0, . . . ,n − 1, we have |πi +μi +νi | �
√

2γ2|pi | and |σi| � eps|si| �
√

2γ2|si|.
Therefore,

(
˜(pπ + pμ + pν) + p̃σ

)(|x|) =
n−1∑
i=0

(|πi + μi + νi| + |σi|
)∣∣xi

∣∣ �
n−1∑
i=0

(√
2γ2|pi|

∣∣xi
∣∣) +

n−1∑
i=0

(√
2γ2|si |

∣∣xi
∣∣).

We now transform the summation into(
˜(pπ + pμ + pν) + p̃σ

)(|x|) �
√

2γ2

n∑
i=1

(|pn−i|
∣∣xn−i

∣∣ + |sn−i |
∣∣xn−i

∣∣)
and use the preceding equation (5.16) and the growth of the sequence γ̃k so that

(
˜(pπ + pμ + pν) + p̃σ

)(|x|) �
√

2γ2

n∑
i=1

(
(1 + γ̃2i−1)̃p

(|x|) + (1 + γ̃2i)̃p
(|x|))

�
√

2γ2

n∑
i=1

2(1 + γ̃2n)̃p
(|x|) = 2n

√
2γ2(1 + γ̃2n)̃p

(|x|).
Since 2n

√
2γ2(1 + γ̃2n) = γ̃2n , we finally obtain (˜(pπ + pμ + pν) + p̃σ)(|x|) � γ̃2n p̃(|x|). �

From Theorem 5.2 the forward error affecting the evaluation of p at x according to the Horner scheme is

e(x) = p(x) − Horner(p, x) = (pπ + pμ + pν + pσ)(x).

The coefficients of these polynomials are exactly computed by Algorithm 5.2, together with Horner(p, x).
If we try to compute a complete error-free transformation for the evaluation of a polynomial of degree n, we will have

to perform recursively the same computation for four polynomials of degree n − 1 and so on. This will produce at the
end of the computation

∑n
i=0 4i = 4n+1−1

4−1 error terms (for example for a polynomial of degree 10 we would obtain more
than one million error terms), almost all of which are null with underflow and the other ones do not have the essential
nonoverlapping property. It will takes a very long time to compute this result (even more probably than with exact symbolic
computation) and we will have to make a drastic selection on the huge amount of data to keep only a few meaningful terms
as a usable result. We only consider here intentionally the first-order error term to obtain a really satisfactory improvement
of the result of the evaluation with a reasonable running time.

Consequently we compute here a single complex floating point number as the first-order error term, the most significant
correction term. The key is then to compute an approximate of the error e(x) in working precision, and then to compute a
corrected result res′ = fl(Horner(p, x) + e(x)).

Our aim is now to compute the correction term c = fl(e(x)) = fl((pπ + pσ + pμ + pν)(x)). For that we evaluate the
polynomial P whose coefficients are those of pπ + pσ + pμ + pν faithfully rounded2 since the sums of the coefficients
pi + qi + ri + si are not necessarily floating point numbers. We compute the coefficients of polynomial P thanks to Accsum
algorithm [3]. This can also be done via other accurate summation algorithms (see [15] for example). We could not use
Sum2 because even with only 4 numbers to sum up, this algorithm could not guarantee a good accuracy of the result. We
modify the classical Horner scheme applied to P , to compute P at the same time.

Algorithm 5.3 (Evaluation of the sum of four polynomials with degree n).

function c = HornerSumAcc(p,q, r, s, x)
vn = Accsum(pn + qn + rn + sn)

for i = n − 1 : −1 : 0
vi = fl(vi+1 · x + Accsum(pi + qi + ri + si))

end
c = v0

Lemma 5.4. Let us consider the floating point evaluation of (p + q + r + s)(x) computed with HornerSumAcc(p,q, r, s, x). Then,
the computed result satisfies the following forward error bound,∣∣HornerSumAcc(p,q, r, s, x) − (p + q + r + s)(x)

∣∣ � γ̃2n+1
(

˜(p + q + r) + s̃
)(|x|).

2 Faithful rounding means that the computed result is equal to the exact result if the latter is a floating point number and otherwise is one of the two
adjacent floating point numbers of the exact result.

68 S. Graillat, V. Ménissier-Morain / Information and Computation 216 (2012) 57–71
Proof. We will use as in [7, p. 68] the notation 〈k〉 to denote the product of k terms of the form 1 + εi for some εi such
that |εi | �

√
2γ2. A product of j such terms multiplied by the product of k such terms is a product of j + k such terms and

consequently we have 〈 j〉〈k〉 = 〈 j + k〉.
Considering Algorithm 5.3, we have vn = Accsum(pn + qn + rn + sn) so according to the property of the Accsum algo-

rithm we have vn = (pn + qn + rn + sn)〈1〉.
For i = n − 1, . . . ,0, the computation of vi from vi+1 leads to an error term for the product and for the Accsum

algorithm and then another on the sum and we have

vi = fl
(

vi+1x + Accsum(pi + qi + ri + si)
) = vi+1x〈2〉 + (pi + qi + ri + si)〈2〉.

Therefore we can prove by induction on i that

vn−i = (pn + qn + rn + sn)xi〈2i + 1〉 +
i−1∑
k=0

(pn−i+k + qn−i+k + rn−i+k + sn−i+k)xk〈2(k + 1)
〉

and then for i = n we obtain

c = v0 = (pn + qn + rn + sn)xn〈2n + 1〉 +
n−1∑
k=0

(pk + qk + rk + sk)xk〈2(k + 1)
〉
.

Consequently we have

c −
n∑

i=0

(pi + qi + ri + si)xi = (pn + qn + rn + sn)xn(〈2n + 1〉 − 1
) +

n−1∑
k=0

(pk + qk + rk + sk)xk(〈2(k + 1)
〉 − 1

)
.

Since for any ε implied in 〈k〉 notation, we have |ε| � √
2γ2, we have∣∣〈k〉 − 1

∣∣ � (1 + √
2γ2)

k − 1 � 1

1 − k
√

2γ2
− 1 = k

√
2γ2

1 − k
√

2γ2
= γ̃k

and the γ̃k sequence is growing, thus |〈k〉 − 1| � γ̃k � γ̃2n+1 pour tout k � 2n + 1. We finally obtain∣∣∣∣∣c −
n∑

i=0

(pi + qi + ri + si)xi

∣∣∣∣∣ � γ̃2n+1

n∑
i=0

(|pi + qi + ri| + |si |
)∣∣xi

∣∣ � γ̃2n+1
(

˜(p + q + r) + s̃
)(|x|). �

We combine now the error-free transformation for the Horner scheme that produces four polynomials and the algorithm
for the evaluation of the sum of four polynomials to obtain a compensated Horner scheme algorithm that improves the
numerical accuracy of the classical Horner scheme on complex numbers.

Algorithm 5.4 (Compensated Horner scheme).

function res′ = CompHorner(p, x)
[res, pπ , pμ, pν, pσ] = EFTHorner(p, x)
c = HornerSumAcc(pπ , pμ, pν, pσ , x)
res′ = fl(res+ c)

We prove hereafter that the result of a polynomial evaluation computed with the compensated Horner scheme Algo-
rithm 5.4 is as accurate as if computed by the classic Horner scheme using twice the working precision and then rounded
to the working precision.

Theorem 5.5. Given a polynomial p = ∑n
i=0 pi xi of degree n with floating point coefficients, and x a floating point value. We consider

the result CompHorner(p, x) computed by Algorithm 5.4. Then,∣∣CompHorner(p, x) − p(x)
∣∣ � eps

∣∣p(x)
∣∣ + γ̃ 2

2n p̃
(|x|). (5.17)

Proof. As res′ = fl(res+ c) so, according to Theorem 3.1, res′ = (1 + ε)(res+ c) with |ε| � eps �
√

2γ2. Thus we have
|res′ − p(x)| = | fl(res + c) − p(x)| = |(1 + ε)(res + c − p(x)) + εp(x)|. Since p(x) = res + e(x), we have |res′ − p| =
|(1 + ε)(c − e(x)) + εp(x)| � eps|p(x)| + (1 + eps)|e(x) − c|. By Lemma 5.4 applied to four polynomials of degree n − 1, we
have ∣∣e(x) − c

∣∣ � γ̃2n−1
(

˜(pπ + pμ + pν) + p̃σ

)(|x|).

S. Graillat, V. Ménissier-Morain / Information and Computation 216 (2012) 57–71 69
By Proposition 5.3 we have also (˜(pπ + pμ + pν) + p̃σ)(|x|) � γ̃2n p̃(|x|). We combine these two bounds and obtain |e(x) −
c| � γ̃2n−1γ̃2n p̃(|x|). As a consequence, |res′ − p(x)| � eps|p(x)| + (1 + √

2γ2)γ̃2n−1γ̃2n p̃(|x|). Since (1 + √
2γ2)γ̃2n−1 � γ̃2n ,

it follows that |res′ − p(x)| � eps|p(x)| + γ̃ 2
2n p̃(x). �

5.3. Numerical experiments

In this section, we will compare our compensated algorithm to other algorithms both in term of accuracy and computing
time.

5.3.1. Accuracy comparisons
Eq. (5.17) can be written

|CompHorner(p, x) − p(x)|
|p(x)| � eps + γ̃ 2

2n cond(p, x). (5.18)

The comparison with the bound (5.12) for the classical Horner scheme shows that the coefficient of the condition number
vanish from γ̃2n to γ̃ 2

2n .
We present here comparison curves for the classical and the compensated Horner scheme.
All our experiments are performed using the IEEE 754 double precision with Matlab 7. When needed, we use the

Symbolic Math Toolbox to accurately compute the polynomial evaluation (in order to compute the relative forward error).
We test the compensated Horner scheme on the expanded form of the polynomial pn(x) = (x− (1+ i))n at x = fl(1.333+

1.333i) for n = 3 : 42. The condition number cond(pn, x) varies from 103 to 1033.
The following figure shows the relative accuracy |res − pn(x)|/|pn(x)| where res is the computed value by the two

Algorithms 5.1 and 5.4. We also plot the a priori error estimations (5.12) and (5.18).
As we can see below, the compensated Horner scheme exhibits the expected behavior, that is to say, the compensated

rule of thumb (5.18). As long as the condition number is less than eps−1 ≈ 1016, the compensated Horner scheme produces
results with full precision (forward relative error of the order of eps ≈ 10−16). For condition numbers greater than eps−1 ≈
1016, the accuracy decreases until no accuracy at all when the condition number is greater than eps−2 ≈ 1032.

5.3.2. Performance comparisons
We have compared in term of computing time three algorithms: the classic Horner scheme, the compensated Horner

scheme, and the classic Horner scheme using MPFR [16] with 106 bits of mantissa. The computations were performed on
quad-core Core i7 M620 at 2.67 GHz with 4 GB of RAM and 4 MB of cache memory. We used gcc-4.5.2 compiler and for
multiprecision mpfr-3.0.1/gmp-5.0.2.

70 S. Graillat, V. Ménissier-Morain / Information and Computation 216 (2012) 57–71
The results are presented in the figure below. For that, we randomly generated some polynomials (coefficients chosen in
[−5;5]) with different degrees varying from 1 to 6500. Then we evaluated those polynomials on a randomly chosen point
(sill in [−5;5]) and we measured the computing time. As one can see, our algorithm is, of course, less efficient than the
classic Horner scheme but provides much more accuracy. Nevertheless, compared the classic Horner scheme with 106 bits
en precision (via MPFR), we are faster while sharing the same accuracy.

6. Conclusion and future work

In this article, we derived some new error-free transformations for complex floating point arithmetic. This makes it
possible to provide a complex version of the compensated Horner scheme.

Nevertheless, the error bound provided in this article is a theoretical one since it contains the quantity |p(x)|. It would
be very interesting to derive a validated error bound α ∈ F that can be computed in floating point arithmetic satisfying
|CompHorner(p, x) − p(x)| � α. This can be done via a kind of running error analysis [17].

We have also provided some new algorithms to compute sum and dot product of complex floating point numbers.

References

[1] X.S. Li, J.W. Demmel, D.H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, S.Y. Kang, A. Kapur, M.C. Martin, B.J. Thompson, T. Tung, D.J. Yoo, Design,
implementation and testing of extended and mixed precision BLAS, ACM Trans. Math. Software 28 (2) (2002) 152–205.

[2] T. Ogita, S.M. Rump, S. Oishi, Accurate sum and dot product, SIAM J. Sci. Comput. 26 (6) (2005) 1955–1988.
[3] S.M. Rump, T. Ogita, S. Oishi, Accurate floating-point summation, Tech. Rep. 05.12, Faculty for Information and Communication Sciences, Hamburg

University of Technology, November 2005.
[4] S. Graillat, N. Louvet, P. Langlois, Compensated Horner scheme, Research Report 04, Équipe de recherche DALI, Laboratoire LP2A, Université de Perpignan

Via Domitia, France, July 2005.
[5] S. Graillat, V. Ménissier-Morain, Compensated Horner scheme in complex floating point arithmetic, in: Proceedings of the 8th Conference on Real

Numbers and Computers, Santiago de Compostela, Spain, July 7–9, 2008, pp. 133–146.
[6] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985, Institute of Electrical and Electronics Engineers, New York, 1985,

reprinted in ACM SIGPLAN Notices 22 (2) (1987) 9–25.
[7] N.J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd edition, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,

2002.
[8] T.J. Dekker, A floating-point technique for extending the available precision, Numer. Math. 18 (1971) 224–242.
[9] D.E. Knuth, The Art of Computer Programming, vol. 2. Seminumerical Algorithms, 3rd edition, Addison–Wesley, Reading, MA, 1998.

[10] Y. Nievergelt, Scalar fused multiply-add instructions produce floating-point matrix arithmetic provably accurate to the penultimate digit, ACM Trans.
Math. Software 29 (1) (2003) 27–48.

[11] S. Boldo, J.-M. Muller, Some functions computable with a Fused-mac, in: Proceedings of the 17th Symposium on Computer Arithmetic, Cape Cod, USA,
2005.

[12] S.M. Rump, Verification of positive definiteness, BIT 46 (2) (2006) 433–452.

S. Graillat, V. Ménissier-Morain / Information and Computation 216 (2012) 57–71 71
[13] R. Brent, C. Percival, P. Zimmermann, Error bounds on complex floating-point multiplication, Math. Comp. 76 (259) (2007) 1469–1481 (electronic).
[14] S. Graillat, V. Ménissier-Morain, Error-free transformations in real and complex floating point arithmetic, in: Proceedings of the International Sympo-

sium on Nonlinear Theory and Its Applications, Vancouver, Canada, September 16–19, 2007, pp. 341–344.
[15] J.W. Demmel, Y. Hida, Accurate and efficient floating point summation, SIAM J. Sci. Comput. 25 (4) (2003) 1214–1248, (electronic).
[16] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, P. Zimmermann, MPFR: A multiple-precision binary floating-point library with correct rounding, ACM Trans.

Math. Software 33 (2) (2007) 13:1–13:15, http://www.mpfr.org.
[17] J.H. Wilkinson, Rounding Errors in Algebraic Processes, Prentice Hall Inc., Englewood Cliffs, NJ, 1963.

http://www.mpfr.org

	Accurate summation, dot product and polynomial evaluation in complex ﬂoating point arithmetic
	1 Introduction
	2 Real ﬂoating point arithmetic
	2.1 Notations and fundamental property of real ﬂoating point arithmetic
	2.2 Error-free transformations in real ﬂoating point arithmetic
	2.2.1 Addition
	2.2.2 Multiplication
	Splitting
	Product

	2.2.3 Properties
	2.2.4 Multiplication with FMA

	3 Complex ﬂoating point arithmetic
	3.1 Notations and fundamental property of complex ﬂoating point arithmetic
	3.2 Sum and product
	3.2.1 Addition
	3.2.2 Multiplication
	Optimization of the algorithm

	3.2.3 Multiplication with FMA

	4 Accurate summation and dot product
	4.1 Accurate summation
	4.2 Accurate dot product

	5 Accurate polynomial evaluation
	5.1 Classical Horner scheme for complex ﬂoating point arithmetic
	5.2 Compensated Horner scheme
	5.3 Numerical experiments
	5.3.1 Accuracy comparisons
	5.3.2 Performance comparisons

	6 Conclusion and future work
	References

