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Abstract—In this article, we address the problem of repro-
ducibility of the blocked LU factorization on GPUs due to
cancellations and rounding errors when dealing with floating-
point arithmetic. Thanks to the hierarchical structure of linear
algebra libraries, the computations carried within this opera-
tion can be expressed in terms of the Level-3 BLAS routines
as well as the unblocked variant of the factorization, while
the latter is correspondingly built upon the Level-1/2 BLAS
kernels. In addition, we strengthen numerical stability of the
blocked LU factorization via partial row pivoting. Therefore,
we propose a double-layer bottom-up approach for ensuring
reproducibility of the blocked LU factorization and provide
experimental results for its underlying blocks.

Keywords-Reproducibility; LU factorization; BLAS; long ac-
cumulator; floating-point expansion; error-free transformation;
GPUs.

I. INTRODUCTION

The first Exascale computers, delivering 1018 operations

per second, are expected to arrive by 2023, offering scientists

the opportunity to perform simulations (related, e.g., to

space weather forecast, human brain, supernova, etc.) at

extreme scales. In order to efficiently utilize such systems,

the runtimes in charge of orchestrating those simulations

will employ various strategies to reduce the communication

overhead as well as to equally and efficiently distribute com-

putations and the associated data. However, those strategies

pursuing excellent performance scaling may also impair the

accuracy and reproducibility1 of the floating-point arithmetic

results [1], [2]. The bottom reason is that the order of opera-

tions impacts the accuracy of the final result, especially when

there is a change in the thread execution order (dynamic

scheduling), reduction trees, blocking, partitioning, instruc-

tions sets, etc. This narrows to the use of finite-precision

computer arithmetic [3], [4] and, therefore, to floating-point

operations that are commutative, but non-associative due to

rounding errors. For instance, ⊕ the addition in binary64
floating-point arithmetic, (−1⊕1)⊕2−53 �= −1⊕(1⊕2−53)
since (−1 ⊕ 1) ⊕ 2−53 = 2−53 and −1 ⊕ (1 ⊕ 2−53) = 0.

1By accuracy, we mean the relative error between the exact result and
the computed result. We define reproducibility as the ability to obtain a
bit-wise identical floating-point result from multiple runs of the code on
the same input data.

Thus, the usage of various optimization strategies and data

access/partitioning patterns during the computation may

potentially lead to differences in the final results. One can

find some examples of the existence of non-reproducibility

problems in [5], [6], [7], [8], [9].

The IEEE 754 standard [10], created in 1985 and then

revised in 2008 (IEEE 754-2008), has led to considerable

enhancements in the reliability of numerical computations

by rigorously specifying the properties of floating-point

arithmetic. This standard is now adopted by most processors,

thus leading to a much better portability of numerical appli-

cations. The IEEE 754-2008 standard also contains the re-

producibility clause that forwards the reproducibility issue to

language standards, which then enforce all implementations

of the language to produce the same result. Additionally,

the IEEE standard introduced some suggestions to achieve

reproducible results. Emerging attention to reproducibility

strives to draw a more careful attention to the problem by

the computer arithmetic community, leading to a potential

inclusion of some mechanisms, which are under consider-

ation, to assure numerical reproducibility of floating-point

operations into the new version of the IEEE 754 standard

due in 2018 [11].

Finding the solution of a linear system of equations often

occurs in the large variety of scientific applications. The

common practice engages the high-performance blocked LU

factorization in this process. Despite the existence of various

implementations of the blocked LU factorization, targeting

an ample variety of architectures ranging from conventional

CPUs to graphics processing units (GPUs), the accuracy and

reproducibility of the produced results cannot be guaranteed.

This is due to the non-associativity of floating-point opera-

tions, dynamic thread scheduling and concurrent execution

on CPUs, as well as the non-determinism of warp scheduling

on GPUs.

In this article, we aim to derive a reproducible algorithmic

variant of the blocked LU factorization and design the

corresponding implementation on GPUs, providing all the

necessary building blocks. Instead of developing this GPU

implementation from scratch, we benefit from the modular

and hierarchical structure of linear algebra libraries and, at
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first, construct and enhance reproducible OpenCL imple-

mentations of the corresponding underlying Basic Linear

Algebra Subprograms (BLAS [12]) kernels. Proceeding in

this manner, the blocked algorithmic variant of the LU

factorization exhibits a double-layer structure:

• The first layer corresponds to the unblocked algorithmic

variant with partial pivoting for stability that can be

formulated in terms of the Level-1/2 BLAS kernels,

namely the vector scaling (SCAL) and the rank-1 update

of a matrix (GER). In addition, for pivoting we search

for a maximum element in the column (MAX) and, if

necessary, swap rows (SWAP).

• The second layer relies upon the Level-3 BLAS kernels

for the matrix-matrix multiplication (GEMM) and the

unit lower triangular system solve with multiple right-

hand sides (TRSM).

We avoid rounding errors in SCAL and GER by carefully

performing or reordering computations – preventing double

rounding when the vector is scaled by the inverse of a

diagonal element through computing this division during

the scaling (INVSCAL), so that these routines yield both

reproducible and correctly-rounded results. The remaining

two operations (MAX and SWAP), which are involved in

pivoting, are reproducible by nature. We extend our hier-

archical approach [13], which leverages a long accumulator

and error-free transformations (EFTs), to produce an exact

dot product (EXDOT) by employing the TwoProd EFT [14]

for the multiplication of two floating-point numbers. For

EXTRSM and EXGEMM, we propose blocked variants that

combine together high performance GPU kernels and EX-

DOT. EXTRSM relies upon small EXTRSM on diagonal blocks

and EXGEMM on off-diagonal blocks. EXTRSM delivers re-

producible, but not yet correctly rounded results. We outline

a strategy for enhancing EXTRSM’s accuracy up to achieving

correctly-rounded results. In addition, we draw a strategy

for improving performance of Level-3 BLAS routines, in

particular of EXGEMM.

The paper is organized as follows. Section II reviews

several aspects of computer arithmetic, in particular the

floating-point expansion and the long accumulator. Sec-

tion III presents the ExBLAS library with the required set of

routines for algorithmic variants of both the unblocked and

blocked LU factorizations. Those reproducible algorithmic

variants are presented in Sections IV and V, accordingly.

Finally, we evaluate our implementations in Section VI and

draw conclusions in Section VII.

II. FLOATING-POINT ARITHMETIC

Floating-point arithmetic consists in an approximating of

real numbers with a significand, an exponent, and a sign:

x = ±x0.x1 . . . xM−1︸ ︷︷ ︸
mantissa

×be, 0 ≤ xi ≤ b− 1, x0 �= 0,

where b is the basis (2 in our case), M is the precision, and e
stands for the exponent that is bounded (emin ≤ e ≤ emax).

In this paper, we consider the binary64 or double-

precision format of the IEEE-754-2008 standard. The

standard requires the basic arithmetic operations

(+,−,×, /,√ ) to be correctly rounded that is to say

that the operations are performed as if the result was first

computed with infinite precision and then rounded to the

current floating-point format. In the sequel of the paper, we

assume that the rounding-mode is rounding-to-nearest. It

means that the basic operations return the closest floating-

point number to the exact result, breaking ties by rounding

to the floating-point number with the even significand.

To increase the accuracy of floating-point operations,

we will use two strategies in order to deal with rounding

errors. The first solution computes the rounding error which

occurred during basic floating-point operations (when possi-

ble) with error-free transformations and then uses floating-

point expansions (unevaluated sum of several floating-point

numbers with little overlapping), see Section II-A. The

second solution exploits the finite range of exponents of

floating-point numbers by storing every bit in a long vector

of bits (long accumulator), see Section II-B.

A. Floating-Point Expansion

Floating-point expansion (FPE) makes it possible to in-

crease the precision of the computations at a moderate cost

especially for floating-point additions. FPE are represented

by an unevaluated sum of p floating-point numbers whose

components are ordered in magnitude with minimal overlap

to cover a wide range of exponents. The algorithms for

computing with FPE rely on the use of EFT for the addition

(TwoSum, see Alg. 1 [15]) and, for the multiplication

(TwoProd, see Alg. 2 [14]). Alg. 1 computes the addition

r of two floating-point numbers a and b and the rounding

error e such that r and e do not overlap and a+ b = r+ e.

Similarly, TwoProd computes the product r of two floating-

point numbers a and b as well as the rounding error e.

For TwoProd, we use the fused-multiply-and-add (FMA)

instruction to track the error that computes a · b − r with

only one rounding at the end.

Algorithm 1: Error-free transformation for the sum of

two floating-point numbers.

Function [r, s] = TwoSum(a, b)
r ← a+ b
z ← r − a
s← (a− (r − z)) + (b− z)

Adding a floating-point number to an expansion of size

p is an iterative process. The floating-point number is first

added to the head of the expansion and the rounding error

is next recovered as a floating-point number using the
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Algorithm 2: Error-free transformation for the product

of two floating-point numbers.

Function [r, e] = TwoProd(a, b)
r := a · b
e := FMA(a, b,−r)

TwoSum EFT. The error is then recursively accumulated to

the remainder of the expansion. As long as the dynamic

range of the sum is lower than 253×p for binary64,

the FPE approach computes the accumulation of numbers

without loss of accuracy.

The main advantage of FPEs is that they can be stored in

registers (after being fetched) during the computations. Nev-

ertheless, their accuracy may be insufficient for large sums

or for floating-point numbers with significantly variations in

magnitude. Moreover, the complexity of FPEs grows linearly

with their size.

B. Long accumulator

Another way to increase the precision of the computation

is to use a long fixed-point accumulator (superaccumulator).

A fixed-point representation stores numbers using an integral

part and a fractional part of fixed size, or equivalently

as a scaled integer. A long accumulator can be seen as

a projection from the input floating-point format that can

represent every bit of information of this format and covers

all the numbers in the range from the minimum representable

floating-point value to the maximum value, independently

of the sign. As an example, Kulisch [16] proposed to

use a 4288-bit long accumulator for the exact dot product

of two vectors composed of binary64 numbers. Fig. 1

illustrates the error-free accumulation of floating-point input

numbers in the long accumulator. The superaccumulator is

a convenient way to compute the exact result of a large

amount of floating-point numbers of arbitrary magnitude.

The main drawbacks of the superaccumulator are its very

large memory overhead and indirect memory accesses.

Figure 1: Long accumulator.

III. EXBLAS– ACCURATE AND REPRODUCIBLE BLAS

This section provides a brief overview of the prototype

implementations of the Exact BLAS (ExBLAS) library

routines [17] that are used within the studied unblocked

and blocked LU factorizations. We begin with the parallel

reduction and dot product that are two fundamental BLAS

kernels. We then continue with the Level-1/2 BLAS routines,

namely vector scaling and outer product, and show that

reproducibility can be attained by carefully rearranging

arithmetic operations. We extend this approach to the Level-

3 BLAS routines – such as the matrix multiplication and the

triangular solve with multiple right-hand sides.

A. EXSUM: Exact Parallel Reduction

The parallel reduction is in the core of many BLAS

routines. So, at first, we derive a multi-level approach for this

operation, aiming to address various modern architectures

with their complex multi-level memory structures. From

one side, we want this approach to be fast to ensure

compatible performance of the reproducible version of the

parallel reduction. From the other side, we want to preserve

every bit of information before the final rounding to the

desired format, e.g. binary64, to assure reproducibility.

To accomplish our goal, we combine together, tune, and

extend to new architectures – like GPUs and Intel Xeon Phi

co-processors – the existing solutions [13], [17]: the floating-

point expansion and the long accumulator.

Algorithm 3: Floating-point expansion a of size p.

Function ExpansionAccumulate(x)
for i = 0→ p− 1 do

(ai, x) := TwoSum(ai, x)
end
if x �= 0 then

Superaccumulate(x)

end

For accumulating floating-point numbers using FPE with

the TwoSum EFT we rely upon Alg. 1. Since FPE occupies

only few words of memory we assign them to each thread

and split computations among those threads; to note, no

sorting or reordering are required during the entire process.

Thus, each thread crunches numbers assigned to it and sends

back this accumulated result. Alg. 3 extends the classic FPE

of size 2 to a variable size p (p = 8 is the large size we test)

and introduces the superaccumulator when the accuracy of

the FPE is not sufficient to store every bit of the result. To re-

duce the memory usage, these superaccumulators are shared

among multiple threads; contention among these threads is

handled via atomic operations. This local accumulation stage

is then followed by the reduction of the superaccumulators

within the work group of threads and, therefore, among the

work groups. Finally, the global superaccumulator, which

stores the result, is correctly rounded to the target floating-

point format.

B. EXDOT: Exact Dot Product

The inner product or dot product of two vectors is another

crucial fundamental BLAS operation. After deriving the
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exact parallel reduction, the remaining challenge to build

the exact dot product [18] lays in the exact multiplication of

two floating-point numbers. For that purpose, we utilize the

TwoProd EFT, see Alg. 2, that returns two values: the result

and the error. Therefore, the EXDOT algorithm is based on

the EXSUM algorithm and the TwoProd EFT: the accumu-

lation of both the result and the error to the FPEs followed

by the reductions of these FPEs and superaccumulators on

various levels as in EXSUM.

C. EXSCAL and EXINVSCAL: Exact Vector Scaling
Scaling a vector x by a scalar α is rather a trivial

operation as it does not induce any dependencies among

the vector elements and requires only one operation to be

performed per element (xi := α · xi). Hence, in order to

ensure correctly-rounded and reproducible results of this

operation, which we name EXSCAL, we require only the

IEEE 754-2008 compliance. But, in the studied variant of

the unblocked LU factorization, see Alg. 4, EXSCAL scales

a vector by the inverse of the diagonal element (α = 1/aii),
which does not assure the correct-rounding. That is due to

the double rounding: one by the division while computing

α and another by the actual vector scaling. To obtain the

exact result, we propose an inverse version of EXSCAL

(EXINVSCAL) – this operation directly performs the division

of all the elements of the vector by the diagonal element,

avoiding the redundant intermediate rounding. Therefore,

EXINVSCAL not only ensures the exact result, but also

reduces the amount of computations.

D. EXGER: Exact Rank-1 Update
We have already discussed the inner product (DOT) of

two vectors. We also consider the outer product (GER) of

two vectors x and y, which forms a matrix, and updates

a matrix A: A := A + α · x · yT ; this operation is often

called as the rank-1 update. The corresponding element-wise

operation to be performed is aij := aij+α ·xi ·yj . Since we

aim to derive the correctly-rounded and reproducible GER

that underlies the unblocked LU factorization, see Alg. 4,

here, we focus on a special case of GER when α := 1.0. In

this case, the element-wise outer product can be performed

by invoking the fused-multiply-and-add (FMA) instruction.

This instruction computes the intermediate result as in the

infinite precision and, then, correctly-rounds the final result

to the desired precision. Thus, by explicitly using the FMA

instruction, we avoid the intermediate rounding and deliver

the exact result of GER.

E. EXTRSM: Exact Triangular Solve
The triangular solve with multiple right-hand sides

(TRSM) solves one of the matrix equations

op(A) ·X = α ·B, or X · op(A) = α ·B,

where α is a scalar; X and B are m×n matrices; A is a unit,

or non-unit, upper or lower triangular matrix; and op(A) is

EXTRSM

EXTRSM

EXTRSM

EXTRSM

EXGEMM

EXGEMM

EXGEMM

EXGEMM

EXGEMM EXGEMM

blsz

Figure 2: Partitioning of a lower triangular matrix A, where blsz
stands for the block size.

one of op(A) = A or op(A) = AT . Once the computation

progresses, the matrix-solution X overwrites B, so only one

matrix is required.

Our interest to TRSM lays in its employment within the

studied blocked LU factorization, Alg. 5, where TRSM is

applied to a unit lower triangular matrix A on the left

from the matrix-solution X . Hence, our focus here is on

this particular variant of TRSM.

In order to construct a reproducible TRSM, which we

name as EXTRSM, we combine together a high-performance

implementation of TRSM and our multi-level reproducible

approach. Regarding the former, this implementation in-

volves blocking with the block size blsz, where both A
and B are split into blocks of size blsz × blsz. Thus,

the computations are organized on those blocks. Each local

triangular system, involving a diagonal block, is solved with

the local TRSM, while the update, involving the entire panel

underneath each diagonal block, is computed with the local

GEMM. This strategy is depicted in Fig. 2. Since the local

TRSM still computes the solution in the sequential order,

the performance benefit originates in the local GEMM that

is computed in parallel with the cloud of work items. Due

to the dependency on the local TRSM, the TRSM algorithm

proceeds with the panel-step from left to right. Finally,

we integrate our exact multi-level algorithm, EXDOT to be

precise, into these local TRSM and GEMM to derive the local

EXTRSM and EXGEMM (see Section III-F), accordingly.

Although EXTRSM assures reproducibility of computed

solution as a sequence of reproducible and correctly-rounded

computations for all its elements, the overall computed

solution is often not correctly-rounded compared to the exact

solution. That is due to the cascade of rounding errors from

rounding each computed element to the target floating-point

format and then using this value to calculate the proceeding

elements. In order to enhance the accuracy of EXTRSM, we

propose to apply a few iterations of refinement based on the

ExBLAS routines.
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F. EXGEMM: Exact Matrix Multiplication

The matrix-matrix multiplication (GEMM) is one of the

building blocks for the triangular solver with multiple right-

hand sides (used internally within this routine) as well as

for the blocked LU factorization, Alg. 5.

For the sake of this article, we consider a general case

of GEMM: C := α · A · B + β · C, where α and β
are scalars that equal one and zero, respectively; C is a

square matrix; and both A and B are column- and row-

panel matrices, accordingly. To derive the exact and effi-

cient GEMM (EXGEMM) [19], we construct our approach

by combining the blocked implementation of GEMM for

the performance purpose and EXDOT to assure both the

accuracy and reproducibility. Thanks to the usage of EXDOT,

EXGEMM delivers correctly-rounded results for each element

of the matrix C.

Since computing each element of the matrix C requires

involvement of a superaccumulator, even in the case of our

hierarchical approach, that leads to a large memory footprint,

in [19] we propose to use only certain amount of superaccu-

mulators that correspond to the currently computed blocks

of the matrix C. Then, these superaccumulators can be

reused for computing the remaining blocks of C. Here, we

propose a lightweight approach for ensuring reproducibility

of GEMM, aiming to improve the EXGEMM performance.

This approach employs only floating-point expansions with

the early-exit technique and, then, rounds each expansion

to the desired format. The latter is the difficult part in this

approach. We consider to utilize the Add3 [20] algorithm,

however we aim to derive our own algorithm for this

rounding. This lightweight approach will reduce the memory

pressure and assure reproducibility, but may not always lead

to the correctly rounded results.

IV. REPRODUCIBLE UNBLOCKED LU FACTORIZATION

The LU factorization decomposes an m × n matrix A
into the product of an m× r unit triagular factor L and an

r× n upper triangular factor U , where r = min(m,n). For

the numerical stability, a sequence of row permutations is

applied during the factorization, yielding the decomposition

PA = LU , where P is an m×m permutation matrix. Alg. 4

displays the (unblocked) right-looking (RL) algorithm for

the LU factorization with partial pivoting using the FLAME

notation [21], [22]. There, size(A) returns the number of

columns of matrix A; for further details on the notation,

see [21]. Before the computation commences, A is virtually

partitioned into four blocks: ATL, ATR, ABL, and ABR,

where ATL is initially void (0 × 0). The matrix A is then

traversed from its top-left to the bottom-right corners. At

each iteration of the loop, A is repartitioned 2× 2→ 3× 3,

see Fig. 3, identifying a scalar α11 on the diagonal of A,

as well as the vectors a01, a
T
10, a

T
12, and the matrix blocks

A00, A02, A20, and A22. The operations in the loop body

update a21 and A22 using, respectively, calls to Level-1 and

Level-2 BLAS kernels SCAL and GER. Upon completion,

the strictly lower triangle of A is overwritten with the

corresponding entries of the the unit lower triangular factor

L while the upper triangular part of A contain those of

U . Furthermore, a vector p of pivots is constructed that

implicitly stores the permutation matrix P applied during

the factorization.

All the operations appearing in Alg. 4 are cast in terms of

BLAS routines. Therefore, we can develop an entire repro-

ducible unblocked RL algorithmic variant for the LU fac-

torization by simply relying on the corresponding ExBLAS

routines, namely EXINVSCAL and EXGER.

Regarding the application of the partial pivoting strategy

in Alg. 4, we note that this technique is composed of two

stages:

1) MAX – find the maximum element in absolute value in

the part of a matrix column, starting from the diagonal

element. This operation is always reproducible.

2) SWAP – exchange values of two rows. This operation

is also reproducible by nature.

In conclusion, all computational steps of the proposed un-

blocked RL algorithm for the LU factorization with partial

pivoting employ reproducible kernels, such as EXINVSCAL

and EXGER, in conjunction with the reproducible strategy for

partial pivoting. Thus, by removing all the sources of indeter-

minism in Alg. 4, and exploiting multi-threaded parallelism

within its building blocks, we ensure the reproducibility and

improve parallel efficiency for this algorithmic variant for

the LU factorization.

V. REPRODUCIBLE BLOCKED LU FACTORIZATION

Despite being numerically stable (in practice) and re-

producible, the unblocked algorithmic variant for the LU

factorization discussed in Section IV will not deliver high

performance on current processor architectures. For this

scenario, it is more efficient to rely on a blocked formulation

of the algorithm, as that illustrated in Alg. 5.

At each iteration of Alg. 5, matrix A is repartitioned 2×
2→ 3×3, identifying the nb×nb block A11 on the diagonal

of A and other matrix blocks of various shapes: row-panels,

column-panels and square blocks. The operations in the loop

body that perform the updates within Alg. 5 are split into

four steps:

1) The LU factorization with partial row pivoting of the

diagonal and subdiagonal matrices, computed via the

unblocked RL algorithm in Alg. 4.

2) The permutation of multiple rows of the matrix A.

3) TRSM to solve a unit lower triangular system with

multiple right-hand sides.

4) GEMM to compute a general matrix-matrix multiplica-

tion.

Hence, Alg. 5 is also composed of simpler linear algebra

operations – such as the unblocked LU factorization and
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Algorithm 4: The unblocked RL algorithmic variant

with partial pivoting for the LU factorization.

Partition

A→
(
ATL ATR

ABL ABR

)
, p→

(
pT
pB

)
where ATL is 0× 0, pT has 0 elements

While size(ATL) < size(A) do
Repartition(
ATL ATR

ABL ABR

)
→
⎛
⎝A00 a01 A02

aT10 α11 aT12
A20 a21 A22

⎞
⎠,

(
pT
pB

)
→
⎛
⎝p0
π1

p2

⎞
⎠

where α11 and π1 are scalars

π1 := PivIndex

(
α11

a21

)
(MAX)(

aT10 α11 aT12
A20 a21 A22

)

:= P (π1)

(
aT10 α11 aT12
A20 a21 A22

)
(SWAP)

a21 := a21/α11 (SCAL/INVSCAL)
A22 := A22 − a21a

T
12 (GER)

Continue with(
ATL ATR

ABL ABR

)
←
⎛
⎝A00 a01 A02

aT10 α11 aT12
A20 a21 A22

⎞
⎠,

(
pT
pB

)
←
⎛
⎝p0
π1

p2

⎞
⎠

endwhile

A00 a01 A02

aT10 α11 aT12

A20 a21 A22

i

1

m
−
i
−
1

i 1 n− i− 1

Figure 3: Partitioning of the matrix A.

several BLAS kernels. Consequently, we can construct a

reproducible blocked algorithmic variant of the LU factor-

ization on top of the unblocked algorithmic variant and

the appropriate ExBLAS routines, namely EXTRSM and

EXGEMM. To conclude, this algorithmic variant ensures

reproducibility of the results and can be expected to deliver

higher performance than its unblocked counterpart.

Algorithm 5: The blocked RL algorithmic variant with

partial pivoting for the LU factorization.

Partition

A→
(
ATL ATR

ABL ABR

)
, p→

(
pT
pB

)
where ATL is 0× 0, pT has 0 elements

While size(ATL) < size(A) do
Determine block size nb

Repartition(
ATL ATR

ABL ABR

)
→
⎛
⎝A00 A01 A02

A10 A11 A12

A20 A21 A22

⎞
⎠,

(
pT
pB

)
→
⎛
⎝p0
p1
p2

⎞
⎠

where A11 is nb × nb and p1 has nb elements[(
A11

A21

)
, p1

]
:= LUPunb

(
A11

A21

)
(Alg. 4)(

A10 A12

A20 A22

)
:= P (p1)

(
A10 A12

A20 A22

)
A12 := trilu(A11)

−1A12 (TRSM)
A22 := A22 −A21A12 (GEMM)

Continue with(
ATL ATR

ABL ABR

)
←
⎛
⎝A00 A01 A02

A10 A11 A12

A20 A21 A22

⎞
⎠,

(
pT
pB

)
←
⎛
⎝p0
p1
p2

⎞
⎠

endwhile

VI. EXPERIMENTAL RESULTS

We verify the accuracy and evaluate the performance of

the unblocked RL LU factorization with partial row pivoting

and the underlying BLAS routines of the blocked variant

on two different NVIDIA architectures; see Tab. I for the

architectures details.

Table I: Hardware platforms employed in the experimental evalu-
ation.

NVIDIA Quadro K420 192 CUDA cores 0.780 GHz

NVIDIA Tesla K80 4,992 CUDA cores 0.560-0.875 GHz
with a dual-GPU design

In order to develop implementations for the studied repro-

ducible algorithmic variants, we start by providing our vec-

torized, parallelized, and optimized non-deterministic dou-

ble precision implementations of the general matrix-matrix

multiplication, the triangular solve with multiple right-hand

sides, and the unblocked LU factorization in Alg. 4; we refer

to these implementations on figures as “GEMM”, “TRSM”,

and “UNBLU”, accordingly. We then integrate our repro-

ducible solutions into these implementations. We tune our

implementations by promoting loop unrolling and changing

workgroup size, as well as by efficiently utilizing the GPU
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resources – such as SIMD instructions, FMAs, private and

local memory, and atomic instructions.

We verify the accuracy of both non-deterministic and

reproducible implementations by comparing their results

against the ones produced by the multiple precision sequen-

tial library MPFR.

In the comparison, we employ these non-deterministic

double precision implementations that are natural candidates

to assess the performance, accuracy and reproducibility of

the results. Regardless of some performance penalties, we

emphasize the importance of obtaining reproducible and,

when possible, correctly-rounded results.

A. EXGEMM

For these tests, we consider two cases, depending on the

matrices shapes:

1) A general case where all the matrices are square.

2) The blocked LU factorization case, addressing the

shapes of the matrices as inquired in the studied

algorithmic variant, Alg. 5.

Figs. 4a and 4b display the performance results for these two

cases. In the captions of both plots, “Superacc” corresponds

to the exact matrix-matrix multiplication algorithm that

is solely based on superaccumulators, while “EXGEMM ”

stands for our exact implementation of GEMM. The latter

efficiently combines floating-point expansions and super-

accumulators in contrast with the former, which could be

classified as a reliable but brute-force approach to ensure

reproducibility. Thus, EXGEMM reduces considerably the

performance overhead of superaccumulators – from 20–22×
to 7–8× only for the considered two cases compared to

the non-deterministic double-precision GEMM – through the

efficient usage of private memory for the expansions.

We also validate the accuracy of the computed results by

GEMM and EXGEMM. Fig. 4c shows the relative forward

error ‖C∗ − C‖/‖C∗‖ against the condition number of the

problem, A · B in our case; C∗ corresponds to the exact

matrix-matrix multiplication and C is computed using either

GEMM or EXGEMM. We compute the condition number

of the problem as ‖exact(|A| · |B|)‖/‖exact(A · B)‖. To

generate the ill-conditioned matrix-matrix multiplication, we

rely on the ill-conditioned dot product: The entries of n− 1
rows of the matrix A and n − 1 columns of the matrix B
are generated following a random uniform distribution, and

the remaining row in A and column in B represent vectors

x and y, the result of the ill-conditioned dot product. For

visual representation, those errors that exceed 1 are replaced

by 1 since there is no single accurate digit left. As the

relative forward error strongly depends on the condition

number of the problem, the error of GEMM equals 1 for all

condition numbers higher than 1016. EXGEMM still ensures

both correct-rounding and reproducibility of the results

independently of the condition number because EXGEMM
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Figure 4: Performance and accuracy results of GEMM.

preserves every bit of the result until its final rounding to

the target floating-point format, binary64 in this case.
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B. EXTRSM

Fig. 5a shows the execution time of the double-precision

and reproducible TRSM versus the matrix size. This test

mirrors the scenario of using TRSM within the blocked LU

factorization, Alg. 5, where the matrix A11 is of the fixed

size blsz × blsz while the number of rows in the matrix

A12 varies. The performance overhead of our reproducible

approach within TRSM is higher – EXTRSM is roughly

14× slower compared with the non-deterministic double-

precision TRSM– than for GEMM due to the dependencies

while computing the local EXTRSM as well as the limited

possibility of using the local EXGEMM. However, we still

benefit from the local EXGEMM as the internal block size is

smaller than blsz = 256.

Regarding the accuracy of both double-precision and re-

producible TRSM implementations, we carry out tests using

ill-conditioned unit triangular matrices. To generate those

matrices, we modify the algorithm described in [23] for

the unit triangular matrices. The results of our tests are

reported in Fig. 5b. We benefit from the MPFR library to

compute exactly the relative forward error and the condition

number of the problem; for the later we employ the Skeel

formula [24], [3]: cond(A, x) = ‖|A−1||A||x|‖/‖x‖. As

the forward error reveals, both implementations are affected

by the increase in the condition number, delivering no

correct digit after a certain value; these errors were set to 1.

This effect occurs later for the reproducible TRSM, as each

element of the solution is computed in the reproducible and

correctly-rounded way with only one rounding to double at

the end.

C. EXUNBLU

For the unblocked RL LU factorization, see Alg. 4, we

do not employ our hierarchical approach for reproducibility,

but rather carefully leverage the IEEE 754-2008 standard.

Hence, Fig. 6 shows only two lines of results: UNBLU and

EXUNBLU for the non-deterministic double-precision and

exact double-precision implementations, respectively.

Figs. 6a and 6b report the execution time obtained by the

unblocked RL algorithmic variant for the LU factorization

with partial row pivoting as a function of the matrix size

(m = n) on K420 and K80. UNBLU is roughly by 3–4 %

faster than EXUNBLU on K80. In contrast, on K420 we can

clearly see that the reproducible implementation outperforms

the non-deterministic one by at least 10%. The reason is that

we compute α as an inverse of the diagonal element and then

use this value in local SCAL (UNBLU), while in EXINVSCAL

(EXUNBLU) we perform division directly. Therefore, as the

error

To verify the accuracy of the RL unblocked LU factor-

ization implementations, we conduct a set of tests on ill-

conditioned matrices (cond(A) ∈ [102, 1041]); the results of

these tests are depicted in Fig. 6c. In order to create these

matrices, we extend the generator for triangular systems [23]
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Figure 5: Performance and results of TRSM.

to a general case, when the entire matrix is in use. In order

to compute the error as ‖PA−LU‖, we rely on the MPFR

library, especially for the product of two matrices. We filter

errors and round those that exceed 1 to 1. This experiment

demonstrates that both UNBLU and EXUNBLU deliver

roughly the same accuracy, however the later is reproducible.

Taking into account the performance equivalence of both

implementations (as the difference is within the time mea-

surement fluctuation range of 3 %, especially for small

problems) and the performance gain of EXUNBLU on K420,

EXUNBLU is a competitive alternative to UNBLU as as it

ensures numerical reproducibility of the results.

VII. CONCLUSIONS AND FUTURE WORK

Dense linear algebra libraries virtually assemble a modu-

lar and hierarchical structure, where higher level operations

–such matrix factorizations– can be entirely constructed on

top of the lower level fundamental kernels – such as the

BLAS routines. In this work, we exploited this property

in order to derive its reproducible algorithmic variant of
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Figure 6: Performance and accuracy results of the unblocked RL
LU factorization, Alg. 4.

the blocked LU factorization. As a concrete case study, we

considered the right-looking variant of the blocked LU fac-

torization that is built on top of the Level-3 BLAS routines

TRSM and GEMM as well as the right-looking unblocked

LU factorization, which in turn relies upon the Level-1/2

BLAS kernels SCAL and GER. As the first step towards

ensuring reproducibility of the blocked LU factorization,

we proposed strategies to guarantee reproducibility of all

these building blocks. We ensured both reproducible and

correctly-rounded results for SCAL and GER by omitting the

intermediate rounding, for example, through the explicit use

of the FMA instruction. Moreover, we enhanced EXGEMM

and proposed an initial version of the reproducible TRSM

with blocking; and we introduced iterative refinement to

enhance accuracy. All these underlying buildings blocks

were implemented on NVIDIA GPUs reporting preliminary

experimental results on two state-of-the-art accelerators. Our

codes provide numerical stability and reproducibility. at the

cost of some performance overheads that we plan to address

in the future.

As part of future work, we plan to improve the per-

formance of the compute-intensive BLAS kernels via a

light-weight strategy, which we briefly outlined here, and

complete the entire blocked LU factorization. In conjunction

with the experimental evidences of the numerical repro-

ducibility, we aim to provide theoretical proofs for EXTRSM

and both unblocked and blocked LU factorizations along

with their error analysis.
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